CanvasItem shaders
CanvasItem shaders are used to draw all 2D elements in Godot. These include all nodes that inherit from CanvasItems, and all GUI elements.
CanvasItem shaders contain less built-in variables and functionality than Spatial shaders, but they maintain the same basic structure with vertex, fragment, and light processor functions.
Render modes
Render mode | Description |
---|---|
blend_mix | Mix blend mode (alpha is transparency), default. |
blend_add | Additive blend mode. |
blend_sub | Subtractive blend mode. |
blend_mul | Multiplicative blend mode. |
blend_premul_alpha | Pre-multiplied alpha blend mode. |
blend_disabled | Disable blending, values (including alpha) are written as-is. |
unshaded | Result is just albedo. No lighting/shading happens in material. |
light_only | Only draw on light pass. |
skip_vertex_transform | VERTEX needs to be transformed manually in vertex function. |
world_vertex_coords | VERTEX is modified in world coordinates instead of local. |
Built-ins
Values marked as “in” are read-only. Values marked as “out” are for optional writing and will not necessarily contain sensible values. Values marked as “inout” provide a sensible default value, and can optionally be written to. Samplers are not subjects of writing and they are not marked.
Global built-ins
Global built-ins are available everywhere, including custom functions.
Built-in | Description |
---|---|
in float TIME | Global time since the engine has started, in seconds. It repeats after every 3,600 seconds (which can be changed with the rollover setting). It’s not affected by time_scale or pausing. If you need a |
in float PI | A |
in float TAU | A |
in float E | An |
Vertex built-ins
Vertex data (VERTEX
) is presented in local space (pixel coordinates, relative to the Node2D’s origin). If not written to, these values will not be modified and be passed through as they came.
The user can disable the built-in model to world transform (world to screen and projection will still happen later) and do it manually with the following code:
shader_type canvas_item;
render_mode skip_vertex_transform;
void vertex() {
VERTEX = (MODEL_MATRIX * vec4(VERTEX, 0.0, 1.0)).xy;
}
Other built-ins, such as UV and COLOR, are also passed through to the fragment function if not modified.
For instancing, the INSTANCE_CUSTOM variable contains the instance custom data. When using particles, this information is usually:
x: Rotation angle in radians.
y: Phase during lifetime (0 to 1).
z: Animation frame.
Built-in | Description |
---|---|
in mat4 MODEL_MATRIX | Local space to world space transform. World space is the coordinates you normally use in the editor. |
in mat4 CANVAS_MATRIX | World space to canvas space transform. In canvas space the origin is the upper-left corner of the screen and coordinates ranging from (0, 0) to viewport size. |
in mat4 SCREEN_MATRIX | Canvas space to clip space. In clip space coordinates ranging from (-1, -1) to (1, 1). |
in int INSTANCE_ID | Instance ID for instancing. |
in vec4 INSTANCE_CUSTOM | Instance custom data. |
in bool AT_LIGHT_PASS | Always |
in vec2 TEXTURE_PIXEL_SIZE | Normalized pixel size of default 2D texture. For a Sprite2D with a texture of size 64x32px, TEXTURE_PIXEL_SIZE = |
inout vec2 VERTEX | Vertex, in local space. |
in int VERTEX_ID | The index of the current vertex in the vertex buffer. |
inout vec2 UV | Normalized texture coordinates. Range from 0 to 1. |
inout vec4 COLOR | Color from vertex primitive. |
inout float POINT_SIZE | Point size for point drawing. |
in vec4 CUSTOM0 | Custom value from vertex primitive. |
in vec4 CUSTOM1 | Custom value from vertex primitive. |
Fragment built-ins
COLOR and TEXTURE
The built-in variable COLOR
is used for a few things:
In the
vertex()
function,COLOR
contains the color from the vertex primitive multiplied by the CanvasItem’s modulate multiplied by the CanvasItem’s self_modulate.In the
fragment()
function, the input valueCOLOR
is that same value multiplied by the color from the defaultTEXTURE
(if present).In the
fragment()
function,COLOR
is also the final output.
Certain nodes (for example, Sprite2D) display a texture by default, for example texture. When using a custom fragment()
function, you have a few options on how to sample this texture.
To read only the contents of the default texture, ignoring the vertex COLOR
:
void fragment() {
COLOR = texture(TEXTURE, UV);
}
To read the contents of the default texture multiplied by vertex COLOR
:
void fragment() {
// Equivalent to an empty fragment() function, since COLOR is also the output variable.
COLOR = COLOR;
}
To read only the vertex COLOR
in fragment()
, ignoring the main texture, you must pass COLOR
as a varying, then read it in fragment()
:
varying vec4 vertex_color;
void vertex() {
vertex_color = COLOR;
}
void fragment() {
COLOR = vertex_color;
}
NORMAL
Similarly, if a normal map is used in the CanvasTexture, Godot uses it by default and assigns its value to the built-in NORMAL
variable. If you are using a normal map meant for use in 3D, it will appear inverted. In order to use it in your shader, you must assign it to the NORMALMAP
property. Godot will handle converting it for use in 2D and overwriting NORMAL
.
NORMALMAP = texture(NORMAL_TEXTURE, UV).rgb;
Built-in | Description |
---|---|
in vec4 FRAGCOORD | Coordinate of pixel center. In screen space. |
in vec2 SCREEN_PIXEL_SIZE | Size of individual pixels. Equal to inverse of resolution. |
in vec2 POINT_COORD | Coordinate for drawing points. |
sampler2D TEXTURE | Default 2D texture. |
in vec2 TEXTURE_PIXEL_SIZE | Normalized pixel size of default 2D texture. For a Sprite2D with a texture of size 64x32px, |
in bool AT_LIGHT_PASS | Always |
sampler2D SPECULAR_SHININESS_TEXTURE | Specular shininess texture of this object. |
in vec4 SPECULAR_SHININESS | Specular shininess color, as sampled from the texture. |
in vec2 UV | UV from vertex function. |
in vec2 SCREEN_UV | Screen UV coordinate for current pixel. |
sampler2D SCREEN_TEXTURE | Removed in Godot 4. Use a |
inout vec3 NORMAL | Normal read from NORMAL_TEXTURE. Writable. |
sampler2D NORMAL_TEXTURE | Default 2D normal texture. |
out vec3 NORMAL_MAP | Configures normal maps meant for 3D for use in 2D. If used, overrides NORMAL. |
out float NORMAL_MAP_DEPTH | Normalmap depth for scaling. |
inout vec2 VERTEX | Pixel position in screen space. |
inout vec2 SHADOW_VERTEX | Same as |
inout vec3 LIGHT_VERTEX | Same as |
inout vec4 COLOR |
|
Light built-ins
Light processor functions work differently in Godot 4.x than they did in Godot 3.x. In Godot 4.x all lighting is done during the regular draw pass. In other words, Godot no longer draws the object again for each light.
Use render_mode unshaded
if you do not want the light processor function to run. Use render_mode light_only
if you only want to see the impact of lighting on an object; this can be useful when you only want the object visible where it is covered by light.
If you define a light function it will replace the built in light function, even if your light function is empty.
Below is an example of a light shader that takes a CanvasItem’s normal map into account:
void light() {
float cNdotL = max(0.0, dot(NORMAL, LIGHT_DIRECTION));
LIGHT = vec4(LIGHT_COLOR.rgb * COLOR.rgb * LIGHT_ENERGY * cNdotL, LIGHT_COLOR.a);
}
Built-in | Description |
---|---|
in vec4 FRAGCOORD | Coordinate of pixel center. In screen space. |
in vec3 NORMAL | Input Normal. |
in vec4 COLOR | Input Color. This is the output of the fragment function. |
in vec2 UV | UV from vertex function, equivalent to the UV in the fragment function. |
sampler2D TEXTURE | Current texture in use for CanvasItem. |
in vec2 TEXTURE_PIXEL_SIZE | Normalized pixel size of TEXTURE. For a Sprite2D with a TEXTURE of size 64x32px, TEXTURE_PIXEL_SIZE = |
in vec2 SCREEN_UV | Screen UV coordinate for current pixel. |
in vec2 POINT_COORD | UV for Point Sprite. |
in vec4 LIGHT_COLOR | Color of Light multiplied by Light’s texture. |
in float LIGHT_ENERGY | Energy multiplier of Light. |
in vec3 LIGHT_POSITION | Position of Light in screen space. If using a |
in vec3 LIGHT_DIRECTION | Direction of Light in screen space. |
in bool LIGHT_IS_DIRECTIONAL |
|
in vec3 LIGHT_VERTEX | Pixel position, in screen space as modified in the fragment function. |
inout vec4 LIGHT | Output color for this Light. |
in vec4 SPECULAR_SHININESS | Specular shininess, as set in the object’s texture. |
out vec4 SHADOW_MODULATE | Multiply shadows cast at this point by this color. |
SDF functions
There are a few additional functions implemented to sample an automatically generated Signed Distance Field texture. These functions available for Fragment and Light functions of CanvasItem shaders.
The signed distance field is generated from LightOccluder2D nodes present in the scene with the SDF Collision property enabled (which is the default). See the 2D lights and shadows documentation for more information.
Function | Description |
---|---|
float texture_sdf (vec2 sdf_pos) | Performs an SDF texture lookup. |
vec2 texture_sdf_normal (vec2 sdf_pos) | Calculates a normal from the SDF texture. |
vec2 sdf_to_screen_uv (vec2 sdf_pos) | Converts an SDF to screen UV. |
vec2 screen_uv_to_sdf (vec2 uv) | Converts screen UV to an SDF. |
User-contributed notes
Please read the User-contributed notes policy before submitting a comment.