CanvasItem shaders

CanvasItem shaders are used to draw all 2D elements in Godot. These include all nodes that inherit from CanvasItems, and all GUI elements.

CanvasItem shaders contain less built-in variables and functionality than Spatial shaders, but they maintain the same basic structure with vertex, fragment, and light processor functions.

Render modes

Render mode

Description

blend_mix

Mix blend mode (alpha is transparency), default.

blend_add

Additive blend mode.

blend_sub

Subtractive blend mode.

blend_mul

Multiplicative blend mode.

blend_premul_alpha

Pre-multiplied alpha blend mode.

blend_disabled

Disable blending, values (including alpha) are written as-is.

unshaded

Result is just albedo. No lighting/shading happens in material.

light_only

Only draw on light pass.

skip_vertex_transform

VERTEX needs to be transformed manually in vertex function.

world_vertex_coords

VERTEX is modified in world coordinates instead of local.

Built-ins

Values marked as “in” are read-only. Values marked as “out” are for optional writing and will not necessarily contain sensible values. Values marked as “inout” provide a sensible default value, and can optionally be written to. Samplers are not subjects of writing and they are not marked.

Global built-ins

Global built-ins are available everywhere, including custom functions.

Built-in

Description

in float TIME

Global time since the engine has started, in seconds. It repeats after every 3,600 seconds (which can be changed with the rollover setting). It’s not affected by time_scale or pausing. If you need a TIME variable that can be scaled or paused, add your own global shader uniform and update it each frame.

in float PI

A PI constant (3.141592). A ration of circle’s circumference to its diameter and amount of radians in half turn.

in float TAU

A TAU constant (6.283185). An equivalent of PI * 2 and amount of radians in full turn.

in float E

An E constant (2.718281). Euler’s number and a base of the natural logarithm.

Vertex built-ins

Vertex data (VERTEX) is presented in local space (pixel coordinates, relative to the Node2D’s origin). If not written to, these values will not be modified and be passed through as they came.

The user can disable the built-in model to world transform (world to screen and projection will still happen later) and do it manually with the following code:

  1. shader_type canvas_item;
  2. render_mode skip_vertex_transform;
  3. void vertex() {
  4. VERTEX = (MODEL_MATRIX * vec4(VERTEX, 0.0, 1.0)).xy;
  5. }

Other built-ins, such as UV and COLOR, are also passed through to the fragment function if not modified.

For instancing, the INSTANCE_CUSTOM variable contains the instance custom data. When using particles, this information is usually:

  • x: Rotation angle in radians.

  • y: Phase during lifetime (0 to 1).

  • z: Animation frame.

Built-in

Description

in mat4 MODEL_MATRIX

Local space to world space transform. World space is the coordinates you normally use in the editor.

in mat4 CANVAS_MATRIX

World space to canvas space transform. In canvas space the origin is the upper-left corner of the screen and coordinates ranging from (0, 0) to viewport size.

in mat4 SCREEN_MATRIX

Canvas space to clip space. In clip space coordinates ranging from (-1, -1) to (1, 1).

in int INSTANCE_ID

Instance ID for instancing.

in vec4 INSTANCE_CUSTOM

Instance custom data.

in bool AT_LIGHT_PASS

Always false.

in vec2 TEXTURE_PIXEL_SIZE

Normalized pixel size of default 2D texture. For a Sprite2D with a texture of size 64x32px, TEXTURE_PIXEL_SIZE = vec2(1/64, 1/32)

inout vec2 VERTEX

Vertex, in local space.

in int VERTEX_ID

The index of the current vertex in the vertex buffer.

inout vec2 UV

Normalized texture coordinates. Range from 0 to 1.

inout vec4 COLOR

Color from vertex primitive.

inout float POINT_SIZE

Point size for point drawing.

in vec4 CUSTOM0

Custom value from vertex primitive.

in vec4 CUSTOM1

Custom value from vertex primitive.

Fragment built-ins

COLOR and TEXTURE

The built-in variable COLOR is used for a few things:

  • In the vertex() function, COLOR contains the color from the vertex primitive multiplied by the CanvasItem’s modulate multiplied by the CanvasItem’s self_modulate.

  • In the fragment() function, the input value COLOR is that same value multiplied by the color from the default TEXTURE (if present).

  • In the fragment() function, COLOR is also the final output.

Certain nodes (for example, Sprite2D) display a texture by default, for example texture. When using a custom fragment() function, you have a few options on how to sample this texture.

To read only the contents of the default texture, ignoring the vertex COLOR:

  1. void fragment() {
  2. COLOR = texture(TEXTURE, UV);
  3. }

To read the contents of the default texture multiplied by vertex COLOR:

  1. void fragment() {
  2. // Equivalent to an empty fragment() function, since COLOR is also the output variable.
  3. COLOR = COLOR;
  4. }

To read only the vertex COLOR in fragment(), ignoring the main texture, you must pass COLOR as a varying, then read it in fragment():

  1. varying vec4 vertex_color;
  2. void vertex() {
  3. vertex_color = COLOR;
  4. }
  5. void fragment() {
  6. COLOR = vertex_color;
  7. }

NORMAL

Similarly, if a normal map is used in the CanvasTexture, Godot uses it by default and assigns its value to the built-in NORMAL variable. If you are using a normal map meant for use in 3D, it will appear inverted. In order to use it in your shader, you must assign it to the NORMALMAP property. Godot will handle converting it for use in 2D and overwriting NORMAL.

  1. NORMALMAP = texture(NORMAL_TEXTURE, UV).rgb;

Built-in

Description

in vec4 FRAGCOORD

Coordinate of pixel center. In screen space. xy specifies position in window. Origin is upper-left.

in vec2 SCREEN_PIXEL_SIZE

Size of individual pixels. Equal to inverse of resolution.

in vec2 POINT_COORD

Coordinate for drawing points.

sampler2D TEXTURE

Default 2D texture.

in vec2 TEXTURE_PIXEL_SIZE

Normalized pixel size of default 2D texture. For a Sprite2D with a texture of size 64x32px, TEXTURE_PIXEL_SIZE = vec2(1/64, 1/32)

in bool AT_LIGHT_PASS

Always false.

sampler2D SPECULAR_SHININESS_TEXTURE

Specular shininess texture of this object.

in vec4 SPECULAR_SHININESS

Specular shininess color, as sampled from the texture.

in vec2 UV

UV from vertex function.

in vec2 SCREEN_UV

Screen UV coordinate for current pixel.

sampler2D SCREEN_TEXTURE

Removed in Godot 4. Use a sampler2D with hint_screen_texture instead.

inout vec3 NORMAL

Normal read from NORMAL_TEXTURE. Writable.

sampler2D NORMAL_TEXTURE

Default 2D normal texture.

out vec3 NORMAL_MAP

Configures normal maps meant for 3D for use in 2D. If used, overrides NORMAL.

out float NORMAL_MAP_DEPTH

Normalmap depth for scaling.

inout vec2 VERTEX

Pixel position in screen space.

inout vec2 SHADOW_VERTEX

Same as VERTEX but can be written to alter shadows.

inout vec3 LIGHT_VERTEX

Same as VERTEX but can be written to alter lighting. Z component represents height.

inout vec4 COLOR

COLOR from the vertex() function multiplied by the TEXTURE color. Also output color value.

Light built-ins

Light processor functions work differently in Godot 4.x than they did in Godot 3.x. In Godot 4.x all lighting is done during the regular draw pass. In other words, Godot no longer draws the object again for each light.

Use render_mode unshaded if you do not want the light processor function to run. Use render_mode light_only if you only want to see the impact of lighting on an object; this can be useful when you only want the object visible where it is covered by light.

If you define a light function it will replace the built in light function, even if your light function is empty.

Below is an example of a light shader that takes a CanvasItem’s normal map into account:

  1. void light() {
  2. float cNdotL = max(0.0, dot(NORMAL, LIGHT_DIRECTION));
  3. LIGHT = vec4(LIGHT_COLOR.rgb * COLOR.rgb * LIGHT_ENERGY * cNdotL, LIGHT_COLOR.a);
  4. }

Built-in

Description

in vec4 FRAGCOORD

Coordinate of pixel center. In screen space. xy specifies position in window. Origin is lower-left.

in vec3 NORMAL

Input Normal.

in vec4 COLOR

Input Color. This is the output of the fragment function.

in vec2 UV

UV from vertex function, equivalent to the UV in the fragment function.

sampler2D TEXTURE

Current texture in use for CanvasItem.

in vec2 TEXTURE_PIXEL_SIZE

Normalized pixel size of TEXTURE. For a Sprite2D with a TEXTURE of size 64x32px, TEXTURE_PIXEL_SIZE = vec2(1/64, 1/32)

in vec2 SCREEN_UV

Screen UV coordinate for current pixel.

in vec2 POINT_COORD

UV for Point Sprite.

in vec4 LIGHT_COLOR

Color of Light multiplied by Light’s texture.

in float LIGHT_ENERGY

Energy multiplier of Light.

in vec3 LIGHT_POSITION

Position of Light in screen space. If using a DirectionalLight2D this is always vec3(0,0,0).

in vec3 LIGHT_DIRECTION

Direction of Light in screen space.

in bool LIGHT_IS_DIRECTIONAL

true if this pass is a DirectionalLight2D.

in vec3 LIGHT_VERTEX

Pixel position, in screen space as modified in the fragment function.

inout vec4 LIGHT

Output color for this Light.

in vec4 SPECULAR_SHININESS

Specular shininess, as set in the object’s texture.

out vec4 SHADOW_MODULATE

Multiply shadows cast at this point by this color.

SDF functions

There are a few additional functions implemented to sample an automatically generated Signed Distance Field texture. These functions available for Fragment and Light functions of CanvasItem shaders.

The signed distance field is generated from LightOccluder2D nodes present in the scene with the SDF Collision property enabled (which is the default). See the 2D lights and shadows documentation for more information.

Function

Description

float texture_sdf (vec2 sdf_pos)

Performs an SDF texture lookup.

vec2 texture_sdf_normal (vec2 sdf_pos)

Calculates a normal from the SDF texture.

vec2 sdf_to_screen_uv (vec2 sdf_pos)

Converts an SDF to screen UV.

vec2 screen_uv_to_sdf (vec2 uv)

Converts screen UV to an SDF.


User-contributed notes

Please read the User-contributed notes policy before submitting a comment.

Previous Next