adaptive_pool2d

paddle.fluid.layers.adaptive_pool2d(input, pool_size, pool_type=’max’, require_index=False, name=None)[源代码]

该OP使用上述输入参数的池化配置,为二维空间自适应池化操作,根据 input , 池化类型 pool_type , 池化核大小 pool_size 这些参数得到输出。

输入X和输出Out是NCHW格式,N为批大小,C是通道数,H是特征高度,W是特征宽度。参数 pool_size 含有两个整型元素, 分别代表高度和宽度上的参数。输出Out的H和W维由 pool_size 决定,即输出shape为

adaptive_pool2d - 图1

对于平均adaptive pool2d:

adaptive_pool2d - 图2

参数

  • input (Variable) - 池化操作的输入张量,维度为

    adaptive_pool2d - 图3

    的4-D Tensor。 输入张量的格式为NCHW,其中N是batch大小,C是通道数,H是特征的高度,W是特征的宽度,数据类型为float32或float64。

  • pool_size (int|list|tuple) - 池化核大小。 如果池化核大小是元组或列表,则它必须包含两个整数(pool_size_Height,pool_size_Width。若为一个整数,则表示H和W维度上均为该值。
  • pool_type (string)- 池化类型,可输入“max”代表max-pooling,或者“avg”代表average-pooling。
  • require_index (bool) - 如果为False,则输出中带有最大池化点所在的索引。 如果pool_type为avg,该项不可被设置为True, 默认False。
  • name (str,可选) – 具体用法请参见 Name ,一般无需设置。默认值:None。

返回

Variable(Tensor) 自适应池化结果张量

返回类型

变量(Variable),数据类型与 input 一致

抛出异常

  • ValueErrorpool_type 不是 ‘max’ 或 ‘avg’
  • ValueError – 当 pool_type 是 ‘avg’ 时,错误地设置 ‘require_index’ 为true .
  • ValueErrorpool_size 应为一个长度为2的列表或元组
  1. # average adaptive pool2d
  2. # 假设输入形为[N, C, H, W], `pool_size` 为 [m, n],
  3. # 输出形为 [N, C, m, n], adaptive pool 将输入的 H 和 W 维度
  4. # 平均分割为 m * n 个栅格(grid) ,然后为每个栅格进行池化得到输出
  5. # adaptive average pool 进行如下操作
  6. #
  7. # for i in range(m):
  8. # for j in range(n):
  9. # hstart = floor(i * H / m)
  10. # hend = ceil((i + 1) * H / m)
  11. # wstart = floor(i * W / n)
  12. # wend = ceil((i + 1) * W / n)
  13. # output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
  14. #
  15. import paddle.fluid as fluid
  16. data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
  17. pool_out = fluid.layers.adaptive_pool2d(
  18. input=data,
  19. pool_size=[3, 3],
  20. pool_type='avg')
  21. # max adaptive pool2d
  22. # 假设输入形为[N, C, H, W], `pool_size` 为 [m, n],
  23. # 输出形为 [N, C, m, n], adaptive pool 将输入的 H 和 W 维度
  24. # 平均分割为 m * n 个栅格(grid) ,然后为每个栅格进行池化得到输出
  25. # adaptive average pool 进行如下操作
  26. #
  27. # for i in range(m):
  28. # for j in range(n):
  29. # hstart = floor(i * H / m)
  30. # hend = ceil((i + 1) * H / m)
  31. # wstart = floor(i * W / n)
  32. # wend = ceil((i + 1) * W / n)
  33. # output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
  34. #
  35. import paddle.fluid as fluid
  36. data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
  37. pool_out = fluid.layers.adaptive_pool2d(
  38. input=data,
  39. pool_size=[3, 3],
  40. pool_type='max')