LambOptimizer
class paddle.fluid.optimizer.LambOptimizer
(learning_rate=0.001, lamb_weight_decay=0.01, beta1=0.9, beta2=0.999, epsilon=1e-06, parameter_list=None, regularization=None, grad_clip=None, exclude_from_weight_decay_fn=None, name=None)[源代码]
LAMB(Layer-wise Adaptive Moments optimizer for Batching training)优化器 LAMB的优化器旨在不降低精度的前提下增大训练的批量大小,其支持自适应的逐元素更新和精确的分层校正。 更多信息请参考 Large Batch Optimization for Deep Learning: Training BERT in 76 minutes 。 参数更新如下:
其中
为第一个动量,
为第二个动量,
为学习率,
为 LAMB 权重衰减率。
参数
- learning_rate (float|Variable) – 用于更新参数的学习率。可以是浮点数,或数据类型为浮点数的 Variable。
- lamb_weight_decay (float) – LAMB权重衰减率。
- beta1 (float) – 第一个动量估计的指数衰减率。
- beta2 (float) – 第二个动量估计的指数衰减率。
- epsilon (float) – 一个小的浮点值,目的是维持数值稳定性。
- parameter_list (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。
- regularization (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: L1Decay 、 L2Decay 。如果一个参数已经在 ParamAttr 中设置了正则化,这里的正则化设置将被忽略; 如果没有在 ParamAttr 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- grad_clip (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: GradientClipByGlobalNorm 、 GradientClipByNorm 、 GradientClipByValue 。 默认值为None,此时将不进行梯度裁剪。
- exclude_from_weight_decay_fn (function) – 当某个参数作为输入该函数返回值为
True
时,为该参数跳过权重衰减。- name (str,可选) – 具体用法请参见 cn_api_guide_Name ,一般无需设置,默认值为None。
代码示例
import paddle.fluid as fluid
data = fluid.layers.data(name='x', shape=[5], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
cost = fluid.layers.mean(hidden)
def exclude_fn(param):
return param.name.endswith('.b_0')
optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
exclude_from_weight_decay_fn=exclude_fn)
optimizer.minimize(cost)
方法
minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
参数
- loss (Variable) – 需要最小化的损失值变量。
- startup_program (Program, 可选) – 用于初始化parameter_list中参数的 Program , 默认值为None,此时将使用 default_startup_program
- parameter_list (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- no_grad_set (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的的集合,默认值为None
返回
tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 Executor.run()
接口的 fetch_list
参数中,若加入,则会重写 use_prune
参数为True,并根据 feed
和 fetch_list
进行剪枝,详见 Executor
的文档。
返回类型
tuple
代码示例
import numpy
import paddle.fluid as fluid
x = fluid.layers.data(name='X', shape=[13], dtype='float32')
y = fluid.layers.data(name='Y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
loss = fluid.layers.mean(cost)
adam = fluid.optimizer.LambOptimizer(learning_rate=0.2)
adam.minimize(loss)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
x = numpy.random.random(size=(10, 13)).astype('float32')
y = numpy.random.random(size=(10, 1)).astype('float32')
exe.run(fluid.default_startup_program())
outs = exe.run(program=fluid.default_main_program(),
feed={'X': x, 'Y': y},
fetch_list=[loss.name])
clear_gradients()
注意:
1. 该API只在 Dygraph 模式下生效
清除需要优化的参数的梯度。
代码示例
import paddle.fluid as fluid
import numpy as np
def exclude_fn(param):
return param.name.endswith('.b_0')
with fluid.dygraph.guard():
value = np.arange(26).reshape(2, 13).astype("float32")
a = fluid.dygraph.to_variable(value)
linear = fluid.Linear(13, 5, dtype="float32")
optimizer = fluid.optimizer.LambOptimizer(learning_rate=0.02,
exclude_from_weight_decay_fn=exclude_fn,
parameter_list=linear.parameters())
out = linear(a)
out.backward()
optimizer.minimize(out)
optimizer.clear_gradients()
current_step_lr()
注意:
1. 该API只在 Dygraph 模式下生效
获取当前步骤的学习率。当不使用LearningRateDecay时,每次调用的返回值都相同,否则返回当前步骤的学习率。
返回 当前步骤的学习率。
返回类型 float
代码示例
import paddle.fluid as fluid
import numpy as np
# example1: LearningRateDecay is not used, return value is all the same
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
lr = adam.current_step_lr()
print(lr) # 0.001
# example2: PiecewiseDecay is used, return the step learning rate
with fluid.dygraph.guard():
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = fluid.dygraph.nn.Linear(10, 10)
inp = fluid.dygraph.to_variable(inp)
out = linear(inp)
loss = fluid.layers.reduce_mean(out)
bd = [2, 4, 6, 8]
value = [0.2, 0.4, 0.6, 0.8, 1.0]
adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
parameter_list=linear.parameters())
# first step: learning rate is 0.2
np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True
# learning rate for different steps
ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
for i in range(12):
adam.minimize(loss)
lr = adam.current_step_lr()
np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True