less_than
paddle.fluid.layers.less_than
(x, y, force_cpu=None, cond=None)[源代码]
该OP逐元素地返回
的逻辑值,使用重载算子 < 可以有相同的计算函数效果
参数
- x (Variable) - 进行比较的第一个输入,是一个多维的LoDTensor/Tensor,数据类型可以是float32,float64,int32,int64。
- y (Variable) - 进行比较的第二个输入,是一个多维的LoDTensor/Tensor,数据类型可以是float32,float64,int32,int64。
- force_cpu (bool) – 如果为True则强制将输出变量写入CPU内存中,否则将其写入目前所在的运算设备上。默认值为False。注意:该属性已弃用,其值始终是False。
- cond (Variable,可选) – 指定算子输出结果的LoDTensor/Tensor,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
返回
输出结果的LoDTensor/Tensor,数据的shape和输入x一致。
返回类型
Variable,数据类型为bool。
代码示例
import paddle.fluid as fluid
import numpy as np
# Graph Organizing
x = fluid.layers.data(name='x', shape=[2], dtype='float64')
y = fluid.layers.data(name='y', shape=[2], dtype='float64')
result = fluid.layers.less_than(x=x, y=y)
# The comment lists another available method.
# result = fluid.layers.fill_constant(shape=[2], dtype='float64', value=0)
# fluid.layers.less_than(x=x, y=y, cond=result)
# Create an executor using CPU as example
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
# Execute
x_i = np.array([[1, 2], [3, 4]]).astype(np.float64)
y_i = np.array([[2, 2], [1, 3]]).astype(np.float64)
result_value, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[result])
print(result_value) # [[True, False], [False, False]]