DataLoader
class paddle.fluid.io.DataLoader
[源代码]
方法
from_generator(feed_list=None, capacity=None, use_double_buffer=True, iterable=True, return_list=False, use_multiprocess=False, drop_last=True)
注解
框架保证DataLoader的数据加载顺序与用户提供的数据源读取顺序一致。
创建一个DataLoader对象用于加载Python生成器产生的数据。数据会由Python线程预先读取,并异步送入一个队列中。
本方法创建的DataLoader对象提供了3个方法设置数据源,分别是 set_sample_generator
, set_sample_list_generator
和 set_batch_generator
。请查阅下述示例代码了解它们的使用方法。
如果iterable = True,本方法创建的DataLoader对象时一个Python生成器,可以for-range的方法循环迭代。
如果iterable = False,本方法创建的DataLoader对象提供 start()
和 reset()
方法控制数据读取过程。此模式用于兼容 fluid.layers.py_reader
的使用方式。用户可使用iterable = False模式,方便地将 fluid.layers.py_reader
的代码迁移至 fluid.io.DataLoader
。
参数
- feed_list (list(Variable)|tuple(Variable)) - feed变量列表,由
fluid.layers.data()
创建。- capacity (int) - DataLoader对象内部维护队列的容量大小。单位是batch数量。若reader读取速度较快,建议设置较大的capacity值。
- use_double_buffer (bool) - 是否使用
double_buffer_reader
。若use_double_buffer=True,DataLoader会异步地预读取下一个batch的数据,可加速数据读取过程,但同时会占用少量的CPU/GPU存储,即一个batch输入数据的存储空间。- iterable (bool) - 所创建的DataLoader对象是否可迭代。
- return_list (bool) - 每个设备上的数据是否以list形式返回。仅在iterable = True模式下有效。若return_list = False,每个设备上的返回数据均是str -> LoDTensor的映射表,其中映射表的key是每个输入变量的名称。若return_list = True,则每个设备上的返回数据均是list(LoDTensor)。推荐在静态图模式下使用return_list = False,在动态图模式下使用return_list = True。
- use_multiprocess (bool) - 设置是否是用多进程加速动态图的数据载入过程。注意:该参数的设置仅在动态图模式下有效, 在静态图模式下,该参数设置与否均无任何影响。默认值为False。
- drop_last (bool): 是否丢弃最后的不足CPU/GPU设备数的批次。默认值为True。在网络训练时,用户不能设置drop_last=False,此时所有CPU/GPU设备均应从DataLoader中读取到数据。在网络预测时,用户可以设置drop_last=False,此时最后不足CPU/GPU设备数的批次可以进行预测。
返回
被创建的DataLoader对象
返回类型
loader (DataLoader)
代码示例 1
import paddle.fluid as fluid
import numpy as np
BATCH_NUM = 10
BATCH_SIZE = 16
EPOCH_NUM = 4
CLASS_NUM = 10
ITERABLE = True # whether the created DataLoader object is iterable
USE_GPU = False # whether to use GPU
DATA_FORMAT = 'batch_generator' # data format of data source user provides
def simple_net(image, label):
fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
loss = fluid.layers.reduce_mean(cross_entropy)
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(loss)
return loss
def get_random_images_and_labels(image_shape, label_shape):
image = np.random.random(size=image_shape).astype('float32')
label = np.random.random(size=label_shape).astype('int64')
return image, label
# If the data generator yields one sample each time,
# use DataLoader.set_sample_generator to set the data source.
def sample_generator_creator():
def __reader__():
for _ in range(BATCH_NUM * BATCH_SIZE):
image, label = get_random_images_and_labels([784], [1])
yield image, label
return __reader__
# If the data generator yield list of samples each time,
# use DataLoader.set_sample_list_generator to set the data source.
def sample_list_generator_creator():
def __reader__():
for _ in range(BATCH_NUM):
sample_list = []
for _ in range(BATCH_SIZE):
image, label = get_random_images_and_labels([784], [1])
sample_list.append([image, label])
yield sample_list
return __reader__
# If the data generator yields a batch each time,
# use DataLoader.set_batch_generator to set the data source.
def batch_generator_creator():
def __reader__():
for _ in range(BATCH_NUM):
batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1])
yield batch_image, batch_label
return __reader__
# If DataLoader is iterable, use for loop to train the network
def train_iterable(exe, prog, loss, loader):
for _ in range(EPOCH_NUM):
for data in loader():
exe.run(prog, feed=data, fetch_list=[loss])
# If DataLoader is not iterable, use start() and reset() method to control the process
def train_non_iterable(exe, prog, loss, loader):
for _ in range(EPOCH_NUM):
loader.start() # call DataLoader.start() before each epoch starts
try:
while True:
exe.run(prog, fetch_list=[loss])
except fluid.core.EOFException:
loader.reset() # call DataLoader.reset() after catching EOFException
def set_data_source(loader, places):
if DATA_FORMAT == 'sample_generator':
loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
elif DATA_FORMAT == 'sample_list_generator':
loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
elif DATA_FORMAT == 'batch_generator':
loader.set_batch_generator(batch_generator_creator(), places=places)
else:
raise ValueError('Unsupported data format')
image = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Define DataLoader
loader = fluid.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
# Define network
loss = simple_net(image, label)
# Set data source of DataLoader
#
# If DataLoader is iterable, places must be given and the number of places must be the same with device number.
# - If you are using GPU, call `fluid.cuda_places()` to get all GPU places.
# - If you are using CPU, call `fluid.cpu_places()` to get all CPU places.
#
# If DataLoader is not iterable, places can be None.
places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
set_data_source(loader, places)
exe = fluid.Executor(places[0])
exe.run(fluid.default_startup_program())
prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
if loader.iterable:
train_iterable(exe, prog, loss, loader)
else:
train_non_iterable(exe, prog, loss, loader)
'''
Users can use return_list = True in dygraph mode.
'''
with fluid.dygraph.guard(places[0]):
loader = fluid.io.DataLoader.from_generator(capacity=2, return_list=True)
set_data_source(loader, places[0])
for image, label in loader():
relu = fluid.layers.relu(image)
assert image.shape == [BATCH_SIZE, 784]
assert label.shape == [BATCH_SIZE, 1]
assert relu.shape == [BATCH_SIZE, 784]
代码示例 2
import paddle.fluid as fluid
import numpy as np
import os
# We use 2 CPU cores to run inference network
os.environ['CPU_NUM'] = '2'
# The data source has only 3 batches, which can not be
# divided evenly to each CPU core
def batch_generator():
for i in range(3):
yield np.array([i+1]).astype('float32'),
x = fluid.data(name='x', shape=[None], dtype='float32')
y = x * x
def run_inference(drop_last):
loader = fluid.io.DataLoader.from_generator(feed_list=[x],
capacity=8, drop_last=drop_last)
loader.set_batch_generator(batch_generator, fluid.cpu_places())
exe = fluid.Executor(fluid.CPUPlace())
prog = fluid.CompiledProgram(fluid.default_main_program())
prog = prog.with_data_parallel()
result = []
for data in loader():
each_ret, = exe.run(prog, feed=data, fetch_list=[y])
result.extend(each_ret)
return result
# Set drop_last to True, so that the last batch whose
# number is less than CPU core number would be discarded.
print(run_inference(drop_last=True)) # [1.0, 4.0]
# Set drop_last to False, so that the last batch whose
# number is less than CPU core number can be tested.
print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
from_dataset(dataset, places, drop_last=True)
创建一个DataLoader对象用于加载Dataset产生的数据。目前,Dataset仅支持Linux系统下使用。
参数
- dataset (InMemoryDataset|QueueDataset) - Dataset对象。
- places (list(CUDAPlace)|list(CPUPlace)) - DataLoader对象返回数据所在的place。
- drop_last (bool) - 是否丢弃最后样本数量不足batch size的batch。若drop_last = True则丢弃,若drop_last = False则不丢弃。
返回
被创建的DataLoader对象,可以for-range的方式循环迭代
返回类型
loader (DataLoader)
代码示例
import paddle.fluid as fluid
image = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
dataset.set_batch_size(32)
dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
dataset.set_use_var([image, label])
dataset.set_pipe_command('cat')
loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places())