ModelAverage

查看属性与别名

API属性:声明式编程(静态图)专用API

class paddle.fluid.optimizer.ModelAverage ( average_window_rate, min_average_window=10000, max_average_window=10000, regularization=None, name=None ) [源代码]

ModelAverage优化器,在训练过程中累积特定连续的历史Parameters,累积的历史范围可以用传入的average_window参数来控制,在预测时使用平均后的Parameters,通常可以提高预测的精度。

在滑动窗口中累积Parameters的平均值,将结果将保存在临时变量中,通过调用 apply() 方法可应用于当前模型的Parameters,使用 restore() 方法恢复当前模型Parameters的值。

计算平均值的窗口大小由 average_window_ratemin_average_windowmax_average_window 以及当前Parameters更新次数(num_updates)共同决定。

累积次数(num_accumulates)大于特定窗口阈值(average_window)时,将累积的Parameters临时变量置为0.0,这几个参数的作用通过以下示例代码说明:

  1. if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
  2. num_accumulates = 0

上述条件判断语句中,num_accumulates表示当前累积的次数,可以抽象理解为累积窗口的长度,窗口长度至少要达到min_average_window参数设定的长度,并且不能超过max_average_window参数或者num_updates * average_window_rate规定的长度,其中num_updates表示当前Parameters更新的次数,average_window_rate是一个计算窗口长度的系数。

参数

  • average_window_rate (float) – 相对于Parameters更新次数的窗口长度计算比率
  • min_average_window (int, 可选) – 平均值计算窗口长度的最小值,默认值为10000
  • max_average_window (int, 可选) – 平均值计算窗口长度的最大值,推荐设置为一轮训练中mini-batchs的数目,默认值为10000
  • regularization (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: L1DecayL2Decay 。如果一个参数已经在 ParamAttr 中设置了正则化,这里的正则化设置将被忽略; 如果没有在 ParamAttr 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
  • name (str, 可选)– 该参数供开发人员打印调试信息时使用,具体用法请参见 Name ,默认值为None

代码示例

  1. import paddle.fluid as fluid
  2. import numpy
  3. # 首先创建执行引擎
  4. place = fluid.CPUPlace() # fluid.CUDAPlace(0)
  5. exe = fluid.Executor(place)
  6. train_program = fluid.Program()
  7. startup_program = fluid.Program()
  8. with fluid.program_guard(train_program, startup_program):
  9. # 构建net
  10. data = fluid.layers.data(name='X', shape=[1], dtype='float32')
  11. hidden = fluid.layers.fc(input=data, size=10)
  12. loss = fluid.layers.mean(hidden)
  13. optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
  14. optimizer.minimize(loss)
  15. # 构建ModelAverage优化器
  16. model_average = fluid.optimizer.ModelAverage(0.15,
  17. min_average_window=10000,
  18. max_average_window=12500)
  19. exe.run(startup_program)
  20. for i in range(12500):
  21. x = numpy.random.random(size=(10, 1)).astype('float32')
  22. outs = exe.run(program=train_program,
  23. feed={'X': x},
  24. fetch_list=[loss.name])
  25. # 应用ModelAverage
  26. with model_average.apply(exe):
  27. x = numpy.random.random(size=(10, 1)).astype('float32')
  28. exe.run(program=train_program,
  29. feed={'X': x},
  30. fetch_list=[loss.name])

方法

apply(executor, need_restore=True)

将累积Parameters的平均值应用于当前网络的Parameters。

参数

  • executor (fluid.Executor) – 当前网络的执行器
  • need_restore (bool) – 恢复标志变量,设为True时,执行完成后会将网络的Parameters恢复为网络默认的值,设为False将不会恢复,默认值True

返回

代码示例

  1. import paddle.fluid as fluid
  2. import numpy
  3. # 首先创建执行引擎
  4. place = fluid.CPUPlace() # fluid.CUDAPlace(0)
  5. exe = fluid.Executor(place)
  6. train_program = fluid.Program()
  7. startup_program = fluid.Program()
  8. with fluid.program_guard(train_program, startup_program):
  9. # 构建net
  10. data = fluid.layers.data(name='X', shape=[1], dtype='float32')
  11. hidden = fluid.layers.fc(input=data, size=10)
  12. loss = fluid.layers.mean(hidden)
  13. optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
  14. optimizer.minimize(loss)
  15. # 构建ModelAverage优化器
  16. model_average = fluid.optimizer.ModelAverage(0.15,
  17. min_average_window=10000,
  18. max_average_window=12500)
  19. exe.run(startup_program)
  20. for i in range(12500):
  21. x = numpy.random.random(size=(10, 1)).astype('float32')
  22. outs = exe.run(program=train_program,
  23. feed={'X': x},
  24. fetch_list=[loss.name])
  25. # 应用ModelAverage
  26. with model_average.apply(exe):
  27. x = numpy.random.random(size=(10, 1)).astype('float32')
  28. exe.run(program=train_program,
  29. feed={'X': x},
  30. fetch_list=[loss.name])

restore(executor)

恢复当前网络的Parameters值

参数

  • executor (fluid.Executor) – 当前网络的执行器

返回

代码示例

  1. import paddle.fluid as fluid
  2. import numpy
  3. # 首先创建执行引擎
  4. place = fluid.CPUPlace() # fluid.CUDAPlace(0)
  5. exe = fluid.Executor(place)
  6. train_program = fluid.Program()
  7. startup_program = fluid.Program()
  8. with fluid.program_guard(train_program, startup_program):
  9. # 构建net
  10. data = fluid.layers.data(name='X', shape=[1], dtype='float32')
  11. hidden = fluid.layers.fc(input=data, size=10)
  12. loss = fluid.layers.mean(hidden)
  13. optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
  14. optimizer.minimize(loss)
  15. # 构建ModelAverage优化器
  16. model_average = fluid.optimizer.ModelAverage(0.15,
  17. min_average_window=10000,
  18. max_average_window=12500)
  19. exe.run(startup_program)
  20. for i in range(12500):
  21. x = numpy.random.random(size=(10, 1)).astype('float32')
  22. outs = exe.run(program=train_program,
  23. feed={'X': x},
  24. fetch_list=[loss.name])
  25. # 应用ModelAverage
  26. with model_average.apply(exe, False):
  27. x = numpy.random.random(size=(10, 1)).astype('float32')
  28. exe.run(program=train_program,
  29. feed={'X': x},
  30. fetch_list=[loss.name])
  31. # 恢复网络Parameters
  32. model_average.restore(exe)