ParameterList
- class
paddle.fluid.dygraph.
ParameterList
(parameters=None)[源代码]
参数列表容器。此容器的行为类似于Python列表,但它包含的参数将被正确地注册和添加。
- 参数:
- parameters (iterable,可选) - 可迭代的Parameters。
返回:无
代码示例
- import paddle.fluid as fluid
- import numpy as np
- class MyLayer(fluid.Layer):
- def __init__(self, num_stacked_param):
- super(MyLayer, self).__init__()
- # 使用可迭代的 Parameters 创建 ParameterList
- self.params = fluid.dygraph.ParameterList(
- [fluid.layers.create_parameter(
- shape=[2, 2], dtype='float32')] * num_stacked_param)
- def forward(self, x):
- for i, p in enumerate(self.params):
- tmp = self._helper.create_variable_for_type_inference('float32')
- self._helper.append_op(
- type="mul",
- inputs={"X": x,
- "Y": p},
- outputs={"Out": tmp},
- attrs={"x_num_col_dims": 1,
- "y_num_col_dims": 1})
- x = tmp
- return x
- data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
- with fluid.dygraph.guard():
- x = fluid.dygraph.to_variable(data_np)
- num_stacked_param = 4
- model = MyLayer(num_stacked_param)
- print(len(model.params)) # 4
- res = model(x)
- print(res.shape) # [5, 2]
- replaced_param = fluid.layers.create_parameter(shape=[2, 3], dtype='float32')
- model.params[num_stacked_param - 1] = replaced_param # 替换最后一个参数
- res = model(x)
- print(res.shape) # [5, 3]
- model.params.append(fluid.layers.create_parameter(shape=[3, 4], dtype='float32')) # 添加参数
- print(len(model.params)) # 5
- res = model(x)
- print(res.shape) # [5, 4]