RecomputeOptimizer
注意:该API仅支持【静态图】模式
- class
paddle.fluid.optimizer.
RecomputeOptimizer
(optimizer)[源代码]
通常来讲,一个深度学习的训练流程包含了三个子步骤:首先,运行前向算子来计算Variable和loss的值;其次,运行反向算子来计算参数的梯度;最后,应用优化算法以更新参数值。
在前向运算过程中,反向运算会用到的Variable都会保存在内存中,当模型深度很深时,这会占用大量的内存。
重计算将深度学习网络切分为k个部分(segments)。在每个segment,运行反向运算时会首先运算前向计算。在重计算模式下,前向计算除了checkpoint和一些必须存储在内存中的特殊Variable,其他临时Variable都会被释放,这对节省内存非常有益。
把一个深度学习网络切分为k个segments的Variables被称为checkpoints。用户在使用运行RecomputeOptimizer之前需要先设置checkpoints。
- 参数:
- optimizer (Optimizer)-内部优化器
代码示例:
- import paddle.fluid as fluid
- import numpy as np
- def gen_data():
- return {"x": np.random.random(size=(32, 32)).astype('float32'),
- "y": np.random.randint(2, size=(32, 1)).astype('int64')}
- def mlp(input_x, input_y, hid_dim=128, label_dim=2):
- print(input_x)
- fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
- prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
- cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
- sum_cost = fluid.layers.reduce_mean(cost)
- return sum_cost, fc_1, prediction
- input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
- input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
- cost, fc_1, pred = mlp(input_x, input_y)
- sgd = fluid.optimizer.Adam(learning_rate=0.01)
- sgd = fluid.optimizer.RecomputeOptimizer(sgd)
- sgd._set_checkpoints([fc_1, pred])
- sgd.minimize(cost)
- print("Finished optimize")
- place = fluid.CPUPlace()
- exe = fluid.Executor(place)
- exe.run(fluid.default_startup_program())
- step = 10
- for i in range(step):
- cost_val = exe.run(feed=gen_data(),
- program=fluid.default_main_program(),
- fetch_list=[cost.name])
- print("step=%d cost=%f" % (i, cost_val[0]))
apply_gradients
(params_grads)
调用self.apply_gradients
- 参数:
- params_grads (list)- 用于优化的(param, grad)对组成的列表
返回: 附加在当前Program的优化算子组成的列表
返回类型: list
代码示例
- import paddle.fluid as fluid
- import paddle.fluid.framework as framework
- def mlp(input_x, input_y, hid_dim=128, label_dim=2):
- fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
- prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
- cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
- sum_cost = fluid.layers.reduce_mean(cost)
- return sum_cost, fc_1, prediction
- input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
- input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
- cost, fc_1, pred = mlp(input_x, input_y)
- print("Finished FF")
- sgd = fluid.optimizer.Adam(learning_rate=0.01)
- sgd = fluid.optimizer.RecomputeOptimizer(sgd)
- params_grads = sgd.backward(
- cost,
- startup_program=None,
- parameter_list=None,
- no_grad_set=None,
- checkpoints=[fc_1, pred])
- program = cost.block.program
- with framework.program_guard(program, None):
- optimize_ops = sgd.apply_gradients(params_grads)
- print("Finished apply gradients")
apply_optimize
(loss, startup_program, params_grads)
调用self._optimizer的apply_optimize函数
- 参数:
- loss (Variable) – 用于优化过程的损失值变量
- startup_program (Program) – 用于初始化在parameter_list中参数的startup_program
- params_grads (list)- 用于优化的(param, grad)对组成的列表
返回: 附加在当前Program的算子组成的列表
返回类型: list
代码示例
- import paddle.fluid as fluid
- def mlp(input_x, input_y, hid_dim=128, label_dim=2):
- fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
- prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
- cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
- sum_cost = fluid.layers.reduce_mean(cost)
- return sum_cost, fc_1, prediction
- input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
- input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
- cost, fc_1, pred = mlp(input_x, input_y)
- print("Finished FF")
- sgd = fluid.optimizer.Adam(learning_rate=0.01)
- sgd = fluid.optimizer.RecomputeOptimizer(sgd)
- params_grads = sgd.backward(
- cost,
- startup_program=None,
- parameter_list=None,
- no_grad_set=None,
- checkpoints=[fc_1, pred])
- optimize_ops = sgd.apply_optimize(
- cost, startup_program=None, params_grads=params_grads)
- print("Finished apply_optimize")
backward
(loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None)
带checkpoint的backward函数
- 参数:
- loss (Variable) – 需要最小化的损失值变量
- startup_program (Program, 可选) – 用于初始化parameter_list中参数的 Program , 默认值为None,此时将使用 default_startup_program
- parameter_list (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- no_grad_set (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的的集合,默认值为None
- callbacks (list, 可选) – 当为某参数附加反向算子时所要运行的callables组成的列表
- checkpoints (list, 可选) – 一批作为checkpoints的Variables
返回: 由(param, grad)对构成的列表,其中param是参数,grad是其对应的梯度
返回类型: list
代码示例
- import paddle.fluid as fluid
- def mlp(input_x, input_y, hid_dim=128, label_dim=2):
- fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
- prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
- cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
- sum_cost = fluid.layers.reduce_mean(cost)
- return sum_cost, fc_1, prediction
- input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
- input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
- cost, fc_1, pred = mlp(input_x, input_y)
- print("Finished FF")
- sgd = fluid.optimizer.Adam(learning_rate=0.01)
- sgd = fluid.optimizer.RecomputeOptimizer(sgd)
- params_grads = sgd.backward(
- cost,
- startup_program=None,
- parameter_list=None,
- no_grad_set=None,
- checkpoints=[fc_1, pred])
- print("Finished backward")
load
(stat_dict)
Recompute Optimizer 目前不支持load函数
- 参数:
- stat_dict – load_persistable方法加载的dict
代码示例
- import paddle.fluid as fluid
- import paddle.compat as cpt
- def mlp(input_x, input_y, hid_dim=128, label_dim=2):
- fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
- prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
- cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
- sum_cost = fluid.layers.reduce_mean(cost)
- return sum_cost, fc_1, prediction
- input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
- input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
- cost, fc_1, pred = mlp(input_x, input_y)
- print("Finished FF")
- sgd = fluid.optimizer.Adam(learning_rate=0.01)
- sgd = fluid.optimizer.RecomputeOptimizer(sgd)
- sgd._set_checkpoints([fc_1, pred])
- try:
- stat_dict = {}
- sgd.load(stat_dict)
- except NotImplementedError as e:
- print(cpt.get_exception_message(e))