data_norm

注意:该API仅支持【静态图】模式

  • paddle.fluid.layers.data_norm(input, act=None, epsilon=1e-05, param_attr=None, data_layout='NCHW', in_place=False, name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=False)[源代码]

数据正则化层

可用作conv2d和fully_connected操作的正则化函数。 此层所需的数据格式为以下之一:

  • NHWC [batch, in_height, in_width, in_channels]
  • NCHW [batch, in_channels, in_height, in_width]

data_norm - 图1 为一个mini-batch上的特征:

data_norm - 图2

  • 参数:
    • input (Variable) - 输入变量,它是一个LoDTensor。
    • act (string,默认None) - 激活函数类型,线性| relu | prelu | …
    • epsilon (float,默认1e-05) -
    • param_attr (ParamAttr) - 参数比例的参数属性。
    • data_layout (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
    • in_place (bool,默认值False) - 使data_norm的输入和输出复用同一块内存。
    • name (string,默认None) - 此层的名称(可选)。 如果设置为None,则将自动命名该层。
    • moving_mean_name (string,Default None) - 存储全局Mean的moving_mean的名称。
    • moving_variance_name (string,默认None) - 存储全局Variance的moving_variance的名称。
    • do_model_average_for_mean_and_var (bool,默认值为false) - 是否为mean和variance进行模型平均。
    • slot_dim (int, 默认值为-1) - 一个slot的embedding维度,slot用来表征一类特征的集合,在pslib模式下,通常我们通过slot区分特征id,并从参数服务器(pslib)中提取它们的embedding。embedding的第一维是历史上这个embedding展示的次数。如果本op的输入是由这样的embedding连接而来,那么当这个特征id是新的或空的,则正则化结果可能不实际。为了避免这种情况,我们添加了slot_dim来定位并判断这一维是否为零。如果是的话,我们选择跳过正则化。
    • summary_decay_rate (float, 默认值为0.9999999) - 更新summary信息时的衰减率。
    • sync_stats (bool, 默认值False) - 在多GPU卡的场景下可以使用,用来同步多卡间的summary信息。

返回: 张量变量,是对输入数据进行正则化后的结果。

返回类型: Variable

代码示例

  1. import paddle.fluid as fluid
  2.  
  3. hidden1 = fluid.layers.data(name="hidden1", shape=[200])
  4. hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)