append_backward

注意:该API仅支持【静态图】模式

  • paddle.fluid.backward.append_backward(loss, parameter_list=None, no_grad_set=None, callbacks=None)[源代码]

该接口将向主程序(main_program)追加反向部分 。

完整的神经网络训练由前向和反向传播组成。但是当我们配置网络时,我们只需要指定其前向部分。 该接口使用链式法则,能够根据前向部分自动生成反向部分。

在大多数情况下,用户无需手动调用此接口,它将由优化器(Optimizer)的 minimize 函数自动调用。

  • 参数:
    • loss ( Variable ) - 网络的损失变量。
    • parameter_list (list [Variable|str],可选)- 指定优化器需要更新的参数或参数名称列表。如果为 None ,则将更新所有参数。默认值为 None
    • no_grad_set (set [Variable|str],可选)- 在 block0 ( Block ) 中要忽略梯度的 Variable 的名字的集合。所有的 Block 中带有 stop_gradient = True 的所有 Variable 的名字都会被自动添加到此集合中。如果该参数不为 None,则会将该参数集合的内容添加到默认的集合中。默认值为 None
    • callbacks (list [callable object],可选)- 回调函数列表。用于在反向传播构建中执行一些自定义作业。每次将新的梯度OP添加到程序中时,将调用其中的所有可调用对象。可调用对象必须有两个输入参数: BlockcontextBlock 是将被添加到新梯度算子的块。 context 是一个映射,其键是梯度 Variable 名,值是对应的原始 Variable 。除此之外, context 还有另一个特殊的键值对:键是字符串 __ current_op_desc__ ,值是刚刚触发可调用对象的梯度OP的 op_desc 。默认值为 None

返回: 参数及其梯度 Variable 的元组的列表。元组的第一个值为参数,第二个值为该参数的梯度 Variable

返回类型: list[( Variable , Variable )]

  • 抛出:
    • AssertionError - 如果 loss 不是 Variable 的实例。

示例代码

  1. import paddle.fluid as fluid
  2.  
  3. x = fluid.data(name='x', shape=[None, 13], dtype='int64')
  4. y = fluid.data(name='y', shape=[None, 1], dtype='float32')
  5. x_emb = fluid.embedding(x, size=[100, 256])
  6. y_predict = fluid.layers.fc(input=x_emb, size=1, act=None, name='my_fc')
  7. loss = fluid.layers.square_error_cost(input=y_predict, label=y)
  8. avg_loss = fluid.layers.mean(loss)
  9.  
  10. # 获取main_program中所有weight参数, 不包括bias.
  11. all_weights = [param for param in fluid.default_main_program().block(0).all_parameters() if 'w_' in param.name]
  12. all_weights_name = [w.name for w in all_weights]
  13.  
  14. # 若parameter_list为默认值(None), 则返回包含所有param_grad的list
  15. p_g_list1 = fluid.backward.append_backward(loss=avg_loss)
  16. # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]
  17.  
  18. # 返回与传入parameter_list对应的param_grad的list, 传入的parameter_list可以是 param(Variable类型)的list
  19. p_g_list2 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights)
  20. # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]
  21.  
  22. # 传入的parameter_list也可以是值为param.name(str类型)的list
  23. p_g_list3 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights_name)
  24. # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]
  25.  
  26. # no_grad_set可以是set[Variables]类型,表示梯度将在这些Variables处截断
  27. p_g_list4 = fluid.backward.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
  28. # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]
  29.  
  30. # no_grad_set也可以是set[Variable.names]类型。当参数Variable是在layers内部创建,且不方便显式地指定时,可以使用set[Variable.names]
  31. p_g_list5 = fluid.backward.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
  32. # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]
  33.  
  34. # 返回为[], 因为所有的param_grad均被传入的no_grad_set过滤掉了
  35. p_g_list6 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))