Fingerprint analyzer
Fingerprint analyzer
The fingerprint
analyzer implements a fingerprinting algorithm which is used by the OpenRefine project to assist in clustering.
Input text is lowercased, normalized to remove extended characters, sorted, deduplicated and concatenated into a single token. If a stopword list is configured, stop words will also be removed.
Example output
resp = client.indices.analyze(
analyzer="fingerprint",
text="Yes yes, Gödel said this sentence is consistent and.",
)
print(resp)
response = client.indices.analyze(
body: {
analyzer: 'fingerprint',
text: 'Yes yes, Gödel said this sentence is consistent and.'
}
)
puts response
const response = await client.indices.analyze({
analyzer: "fingerprint",
text: "Yes yes, Gödel said this sentence is consistent and.",
});
console.log(response);
POST _analyze
{
"analyzer": "fingerprint",
"text": "Yes yes, Gödel said this sentence is consistent and."
}
The above sentence would produce the following single term:
[ and consistent godel is said sentence this yes ]
Configuration
The fingerprint
analyzer accepts the following parameters:
| The character to use to concatenate the terms. Defaults to a space. |
| The maximum token size to emit. Defaults to |
| A pre-defined stop words list like |
| The path to a file containing stop words. |
See the Stop Token Filter for more information about stop word configuration.
Example configuration
In this example, we configure the fingerprint
analyzer to use the pre-defined list of English stop words:
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_fingerprint_analyzer": {
"type": "fingerprint",
"stopwords": "_english_"
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_fingerprint_analyzer",
text="Yes yes, Gödel said this sentence is consistent and.",
)
print(resp1)
response = client.indices.create(
index: 'my-index-000001',
body: {
settings: {
analysis: {
analyzer: {
my_fingerprint_analyzer: {
type: 'fingerprint',
stopwords: '_english_'
}
}
}
}
}
)
puts response
response = client.indices.analyze(
index: 'my-index-000001',
body: {
analyzer: 'my_fingerprint_analyzer',
text: 'Yes yes, Gödel said this sentence is consistent and.'
}
)
puts response
const response = await client.indices.create({
index: "my-index-000001",
settings: {
analysis: {
analyzer: {
my_fingerprint_analyzer: {
type: "fingerprint",
stopwords: "_english_",
},
},
},
},
});
console.log(response);
const response1 = await client.indices.analyze({
index: "my-index-000001",
analyzer: "my_fingerprint_analyzer",
text: "Yes yes, Gödel said this sentence is consistent and.",
});
console.log(response1);
PUT my-index-000001
{
"settings": {
"analysis": {
"analyzer": {
"my_fingerprint_analyzer": {
"type": "fingerprint",
"stopwords": "_english_"
}
}
}
}
}
POST my-index-000001/_analyze
{
"analyzer": "my_fingerprint_analyzer",
"text": "Yes yes, Gödel said this sentence is consistent and."
}
The above example produces the following term:
[ consistent godel said sentence yes ]
Definition
The fingerprint
tokenizer consists of:
Tokenizer
Token Filters (in order)
- Lower Case Token Filter
- ASCII folding
- Stop Token Filter (disabled by default)
- Fingerprint
If you need to customize the fingerprint
analyzer beyond the configuration parameters then you need to recreate it as a custom
analyzer and modify it, usually by adding token filters. This would recreate the built-in fingerprint
analyzer and you can use it as a starting point for further customization:
resp = client.indices.create(
index="fingerprint_example",
settings={
"analysis": {
"analyzer": {
"rebuilt_fingerprint": {
"tokenizer": "standard",
"filter": [
"lowercase",
"asciifolding",
"fingerprint"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'fingerprint_example',
body: {
settings: {
analysis: {
analyzer: {
rebuilt_fingerprint: {
tokenizer: 'standard',
filter: [
'lowercase',
'asciifolding',
'fingerprint'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "fingerprint_example",
settings: {
analysis: {
analyzer: {
rebuilt_fingerprint: {
tokenizer: "standard",
filter: ["lowercase", "asciifolding", "fingerprint"],
},
},
},
},
});
console.log(response);
PUT /fingerprint_example
{
"settings": {
"analysis": {
"analyzer": {
"rebuilt_fingerprint": {
"tokenizer": "standard",
"filter": [
"lowercase",
"asciifolding",
"fingerprint"
]
}
}
}
}
}