- Language analyzers
- Language analyzers
- Configuring language analyzers
- Reimplementing language analyzers
arabic
analyzerarmenian
analyzerbasque
analyzerbengali
analyzerbrazilian
analyzerbulgarian
analyzercatalan
analyzercjk
analyzerczech
analyzerdanish
analyzerdutch
analyzerenglish
analyzerestonian
analyzerfinnish
analyzerfrench
analyzergalician
analyzergerman
analyzergreek
analyzerhindi
analyzerhungarian
analyzerindonesian
analyzerirish
analyzeritalian
analyzerlatvian
analyzerlithuanian
analyzernorwegian
analyzerpersian
analyzerportuguese
analyzerromanian
analyzerrussian
analyzerserbian
analyzersorani
analyzerspanish
analyzerswedish
analyzerturkish
analyzerthai
analyzer
- Language analyzers
Language analyzers
Language analyzers
A set of analyzers aimed at analyzing specific language text. The following types are supported: arabic, armenian, basque, bengali, brazilian, bulgarian, catalan, cjk, czech, danish, dutch, english, estonian, finnish, french, galician, german, greek, hindi, hungarian, indonesian, irish, italian, latvian, lithuanian, norwegian, persian, portuguese, romanian, russian, serbian, sorani, spanish, swedish, turkish, thai.
Configuring language analyzers
Stopwords
All analyzers support setting custom stopwords
either internally in the config, or by using an external stopwords file by setting stopwords_path
. Check Stop Analyzer for more details.
Excluding words from stemming
The stem_exclusion
parameter allows you to specify an array of lowercase words that should not be stemmed. Internally, this functionality is implemented by adding the keyword_marker token filter with the keywords
set to the value of the stem_exclusion
parameter.
The following analyzers support setting custom stem_exclusion
list: arabic
, armenian
, basque
, bengali
, bulgarian
, catalan
, czech
, dutch
, english
, finnish
, french
, galician
, german
, hindi
, hungarian
, indonesian
, irish
, italian
, latvian
, lithuanian
, norwegian
, portuguese
, romanian
, russian
, serbian
, sorani
, spanish
, swedish
, turkish
.
Reimplementing language analyzers
The built-in language analyzers can be reimplemented as custom
analyzers (as described below) in order to customize their behaviour.
If you do not intend to exclude words from being stemmed (the equivalent of the stem_exclusion
parameter above), then you should remove the keyword_marker
token filter from the custom analyzer configuration.
arabic
analyzer
The arabic
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="arabic_example",
settings={
"analysis": {
"filter": {
"arabic_stop": {
"type": "stop",
"stopwords": "_arabic_"
},
"arabic_keywords": {
"type": "keyword_marker",
"keywords": [
"مثال"
]
},
"arabic_stemmer": {
"type": "stemmer",
"language": "arabic"
}
},
"analyzer": {
"rebuilt_arabic": {
"tokenizer": "standard",
"filter": [
"lowercase",
"decimal_digit",
"arabic_stop",
"arabic_normalization",
"arabic_keywords",
"arabic_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'arabic_example',
body: {
settings: {
analysis: {
filter: {
arabic_stop: {
type: 'stop',
stopwords: '_arabic_'
},
arabic_keywords: {
type: 'keyword_marker',
keywords: [
'مثال'
]
},
arabic_stemmer: {
type: 'stemmer',
language: 'arabic'
}
},
analyzer: {
rebuilt_arabic: {
tokenizer: 'standard',
filter: [
'lowercase',
'decimal_digit',
'arabic_stop',
'arabic_normalization',
'arabic_keywords',
'arabic_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "arabic_example",
settings: {
analysis: {
filter: {
arabic_stop: {
type: "stop",
stopwords: "_arabic_",
},
arabic_keywords: {
type: "keyword_marker",
keywords: ["مثال"],
},
arabic_stemmer: {
type: "stemmer",
language: "arabic",
},
},
analyzer: {
rebuilt_arabic: {
tokenizer: "standard",
filter: [
"lowercase",
"decimal_digit",
"arabic_stop",
"arabic_normalization",
"arabic_keywords",
"arabic_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /arabic_example
{
"settings": {
"analysis": {
"filter": {
"arabic_stop": {
"type": "stop",
"stopwords": "_arabic_"
},
"arabic_keywords": {
"type": "keyword_marker",
"keywords": ["مثال"]
},
"arabic_stemmer": {
"type": "stemmer",
"language": "arabic"
}
},
"analyzer": {
"rebuilt_arabic": {
"tokenizer": "standard",
"filter": [
"lowercase",
"decimal_digit",
"arabic_stop",
"arabic_normalization",
"arabic_keywords",
"arabic_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
armenian
analyzer
The armenian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="armenian_example",
settings={
"analysis": {
"filter": {
"armenian_stop": {
"type": "stop",
"stopwords": "_armenian_"
},
"armenian_keywords": {
"type": "keyword_marker",
"keywords": [
"օրինակ"
]
},
"armenian_stemmer": {
"type": "stemmer",
"language": "armenian"
}
},
"analyzer": {
"rebuilt_armenian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"armenian_stop",
"armenian_keywords",
"armenian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'armenian_example',
body: {
settings: {
analysis: {
filter: {
armenian_stop: {
type: 'stop',
stopwords: '_armenian_'
},
armenian_keywords: {
type: 'keyword_marker',
keywords: [
'օրինակ'
]
},
armenian_stemmer: {
type: 'stemmer',
language: 'armenian'
}
},
analyzer: {
rebuilt_armenian: {
tokenizer: 'standard',
filter: [
'lowercase',
'armenian_stop',
'armenian_keywords',
'armenian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "armenian_example",
settings: {
analysis: {
filter: {
armenian_stop: {
type: "stop",
stopwords: "_armenian_",
},
armenian_keywords: {
type: "keyword_marker",
keywords: ["օրինակ"],
},
armenian_stemmer: {
type: "stemmer",
language: "armenian",
},
},
analyzer: {
rebuilt_armenian: {
tokenizer: "standard",
filter: [
"lowercase",
"armenian_stop",
"armenian_keywords",
"armenian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /armenian_example
{
"settings": {
"analysis": {
"filter": {
"armenian_stop": {
"type": "stop",
"stopwords": "_armenian_"
},
"armenian_keywords": {
"type": "keyword_marker",
"keywords": ["օրինակ"]
},
"armenian_stemmer": {
"type": "stemmer",
"language": "armenian"
}
},
"analyzer": {
"rebuilt_armenian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"armenian_stop",
"armenian_keywords",
"armenian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
basque
analyzer
The basque
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="basque_example",
settings={
"analysis": {
"filter": {
"basque_stop": {
"type": "stop",
"stopwords": "_basque_"
},
"basque_keywords": {
"type": "keyword_marker",
"keywords": [
"Adibidez"
]
},
"basque_stemmer": {
"type": "stemmer",
"language": "basque"
}
},
"analyzer": {
"rebuilt_basque": {
"tokenizer": "standard",
"filter": [
"lowercase",
"basque_stop",
"basque_keywords",
"basque_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'basque_example',
body: {
settings: {
analysis: {
filter: {
basque_stop: {
type: 'stop',
stopwords: '_basque_'
},
basque_keywords: {
type: 'keyword_marker',
keywords: [
'Adibidez'
]
},
basque_stemmer: {
type: 'stemmer',
language: 'basque'
}
},
analyzer: {
rebuilt_basque: {
tokenizer: 'standard',
filter: [
'lowercase',
'basque_stop',
'basque_keywords',
'basque_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "basque_example",
settings: {
analysis: {
filter: {
basque_stop: {
type: "stop",
stopwords: "_basque_",
},
basque_keywords: {
type: "keyword_marker",
keywords: ["Adibidez"],
},
basque_stemmer: {
type: "stemmer",
language: "basque",
},
},
analyzer: {
rebuilt_basque: {
tokenizer: "standard",
filter: [
"lowercase",
"basque_stop",
"basque_keywords",
"basque_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /basque_example
{
"settings": {
"analysis": {
"filter": {
"basque_stop": {
"type": "stop",
"stopwords": "_basque_"
},
"basque_keywords": {
"type": "keyword_marker",
"keywords": ["Adibidez"]
},
"basque_stemmer": {
"type": "stemmer",
"language": "basque"
}
},
"analyzer": {
"rebuilt_basque": {
"tokenizer": "standard",
"filter": [
"lowercase",
"basque_stop",
"basque_keywords",
"basque_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
bengali
analyzer
The bengali
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="bengali_example",
settings={
"analysis": {
"filter": {
"bengali_stop": {
"type": "stop",
"stopwords": "_bengali_"
},
"bengali_keywords": {
"type": "keyword_marker",
"keywords": [
"উদাহরণ"
]
},
"bengali_stemmer": {
"type": "stemmer",
"language": "bengali"
}
},
"analyzer": {
"rebuilt_bengali": {
"tokenizer": "standard",
"filter": [
"lowercase",
"decimal_digit",
"bengali_keywords",
"indic_normalization",
"bengali_normalization",
"bengali_stop",
"bengali_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'bengali_example',
body: {
settings: {
analysis: {
filter: {
bengali_stop: {
type: 'stop',
stopwords: '_bengali_'
},
bengali_keywords: {
type: 'keyword_marker',
keywords: [
'উদাহরণ'
]
},
bengali_stemmer: {
type: 'stemmer',
language: 'bengali'
}
},
analyzer: {
rebuilt_bengali: {
tokenizer: 'standard',
filter: [
'lowercase',
'decimal_digit',
'bengali_keywords',
'indic_normalization',
'bengali_normalization',
'bengali_stop',
'bengali_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "bengali_example",
settings: {
analysis: {
filter: {
bengali_stop: {
type: "stop",
stopwords: "_bengali_",
},
bengali_keywords: {
type: "keyword_marker",
keywords: ["উদাহরণ"],
},
bengali_stemmer: {
type: "stemmer",
language: "bengali",
},
},
analyzer: {
rebuilt_bengali: {
tokenizer: "standard",
filter: [
"lowercase",
"decimal_digit",
"bengali_keywords",
"indic_normalization",
"bengali_normalization",
"bengali_stop",
"bengali_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /bengali_example
{
"settings": {
"analysis": {
"filter": {
"bengali_stop": {
"type": "stop",
"stopwords": "_bengali_"
},
"bengali_keywords": {
"type": "keyword_marker",
"keywords": ["উদাহরণ"]
},
"bengali_stemmer": {
"type": "stemmer",
"language": "bengali"
}
},
"analyzer": {
"rebuilt_bengali": {
"tokenizer": "standard",
"filter": [
"lowercase",
"decimal_digit",
"bengali_keywords",
"indic_normalization",
"bengali_normalization",
"bengali_stop",
"bengali_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
brazilian
analyzer
The brazilian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="brazilian_example",
settings={
"analysis": {
"filter": {
"brazilian_stop": {
"type": "stop",
"stopwords": "_brazilian_"
},
"brazilian_keywords": {
"type": "keyword_marker",
"keywords": [
"exemplo"
]
},
"brazilian_stemmer": {
"type": "stemmer",
"language": "brazilian"
}
},
"analyzer": {
"rebuilt_brazilian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"brazilian_stop",
"brazilian_keywords",
"brazilian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'brazilian_example',
body: {
settings: {
analysis: {
filter: {
brazilian_stop: {
type: 'stop',
stopwords: '_brazilian_'
},
brazilian_keywords: {
type: 'keyword_marker',
keywords: [
'exemplo'
]
},
brazilian_stemmer: {
type: 'stemmer',
language: 'brazilian'
}
},
analyzer: {
rebuilt_brazilian: {
tokenizer: 'standard',
filter: [
'lowercase',
'brazilian_stop',
'brazilian_keywords',
'brazilian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "brazilian_example",
settings: {
analysis: {
filter: {
brazilian_stop: {
type: "stop",
stopwords: "_brazilian_",
},
brazilian_keywords: {
type: "keyword_marker",
keywords: ["exemplo"],
},
brazilian_stemmer: {
type: "stemmer",
language: "brazilian",
},
},
analyzer: {
rebuilt_brazilian: {
tokenizer: "standard",
filter: [
"lowercase",
"brazilian_stop",
"brazilian_keywords",
"brazilian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /brazilian_example
{
"settings": {
"analysis": {
"filter": {
"brazilian_stop": {
"type": "stop",
"stopwords": "_brazilian_"
},
"brazilian_keywords": {
"type": "keyword_marker",
"keywords": ["exemplo"]
},
"brazilian_stemmer": {
"type": "stemmer",
"language": "brazilian"
}
},
"analyzer": {
"rebuilt_brazilian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"brazilian_stop",
"brazilian_keywords",
"brazilian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
bulgarian
analyzer
The bulgarian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="bulgarian_example",
settings={
"analysis": {
"filter": {
"bulgarian_stop": {
"type": "stop",
"stopwords": "_bulgarian_"
},
"bulgarian_keywords": {
"type": "keyword_marker",
"keywords": [
"пример"
]
},
"bulgarian_stemmer": {
"type": "stemmer",
"language": "bulgarian"
}
},
"analyzer": {
"rebuilt_bulgarian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"bulgarian_stop",
"bulgarian_keywords",
"bulgarian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'bulgarian_example',
body: {
settings: {
analysis: {
filter: {
bulgarian_stop: {
type: 'stop',
stopwords: '_bulgarian_'
},
bulgarian_keywords: {
type: 'keyword_marker',
keywords: [
'пример'
]
},
bulgarian_stemmer: {
type: 'stemmer',
language: 'bulgarian'
}
},
analyzer: {
rebuilt_bulgarian: {
tokenizer: 'standard',
filter: [
'lowercase',
'bulgarian_stop',
'bulgarian_keywords',
'bulgarian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "bulgarian_example",
settings: {
analysis: {
filter: {
bulgarian_stop: {
type: "stop",
stopwords: "_bulgarian_",
},
bulgarian_keywords: {
type: "keyword_marker",
keywords: ["пример"],
},
bulgarian_stemmer: {
type: "stemmer",
language: "bulgarian",
},
},
analyzer: {
rebuilt_bulgarian: {
tokenizer: "standard",
filter: [
"lowercase",
"bulgarian_stop",
"bulgarian_keywords",
"bulgarian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /bulgarian_example
{
"settings": {
"analysis": {
"filter": {
"bulgarian_stop": {
"type": "stop",
"stopwords": "_bulgarian_"
},
"bulgarian_keywords": {
"type": "keyword_marker",
"keywords": ["пример"]
},
"bulgarian_stemmer": {
"type": "stemmer",
"language": "bulgarian"
}
},
"analyzer": {
"rebuilt_bulgarian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"bulgarian_stop",
"bulgarian_keywords",
"bulgarian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
catalan
analyzer
The catalan
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="catalan_example",
settings={
"analysis": {
"filter": {
"catalan_elision": {
"type": "elision",
"articles": [
"d",
"l",
"m",
"n",
"s",
"t"
],
"articles_case": True
},
"catalan_stop": {
"type": "stop",
"stopwords": "_catalan_"
},
"catalan_keywords": {
"type": "keyword_marker",
"keywords": [
"example"
]
},
"catalan_stemmer": {
"type": "stemmer",
"language": "catalan"
}
},
"analyzer": {
"rebuilt_catalan": {
"tokenizer": "standard",
"filter": [
"catalan_elision",
"lowercase",
"catalan_stop",
"catalan_keywords",
"catalan_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'catalan_example',
body: {
settings: {
analysis: {
filter: {
catalan_elision: {
type: 'elision',
articles: [
'd',
'l',
'm',
'n',
's',
't'
],
articles_case: true
},
catalan_stop: {
type: 'stop',
stopwords: '_catalan_'
},
catalan_keywords: {
type: 'keyword_marker',
keywords: [
'example'
]
},
catalan_stemmer: {
type: 'stemmer',
language: 'catalan'
}
},
analyzer: {
rebuilt_catalan: {
tokenizer: 'standard',
filter: [
'catalan_elision',
'lowercase',
'catalan_stop',
'catalan_keywords',
'catalan_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "catalan_example",
settings: {
analysis: {
filter: {
catalan_elision: {
type: "elision",
articles: ["d", "l", "m", "n", "s", "t"],
articles_case: true,
},
catalan_stop: {
type: "stop",
stopwords: "_catalan_",
},
catalan_keywords: {
type: "keyword_marker",
keywords: ["example"],
},
catalan_stemmer: {
type: "stemmer",
language: "catalan",
},
},
analyzer: {
rebuilt_catalan: {
tokenizer: "standard",
filter: [
"catalan_elision",
"lowercase",
"catalan_stop",
"catalan_keywords",
"catalan_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /catalan_example
{
"settings": {
"analysis": {
"filter": {
"catalan_elision": {
"type": "elision",
"articles": [ "d", "l", "m", "n", "s", "t"],
"articles_case": true
},
"catalan_stop": {
"type": "stop",
"stopwords": "_catalan_"
},
"catalan_keywords": {
"type": "keyword_marker",
"keywords": ["example"]
},
"catalan_stemmer": {
"type": "stemmer",
"language": "catalan"
}
},
"analyzer": {
"rebuilt_catalan": {
"tokenizer": "standard",
"filter": [
"catalan_elision",
"lowercase",
"catalan_stop",
"catalan_keywords",
"catalan_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
cjk
analyzer
You may find that icu_analyzer
in the ICU analysis plugin works better for CJK text than the cjk
analyzer. Experiment with your text and queries.
The cjk
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="cjk_example",
settings={
"analysis": {
"filter": {
"english_stop": {
"type": "stop",
"stopwords": [
"a",
"and",
"are",
"as",
"at",
"be",
"but",
"by",
"for",
"if",
"in",
"into",
"is",
"it",
"no",
"not",
"of",
"on",
"or",
"s",
"such",
"t",
"that",
"the",
"their",
"then",
"there",
"these",
"they",
"this",
"to",
"was",
"will",
"with",
"www"
]
}
},
"analyzer": {
"rebuilt_cjk": {
"tokenizer": "standard",
"filter": [
"cjk_width",
"lowercase",
"cjk_bigram",
"english_stop"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'cjk_example',
body: {
settings: {
analysis: {
filter: {
english_stop: {
type: 'stop',
stopwords: [
'a',
'and',
'are',
'as',
'at',
'be',
'but',
'by',
'for',
'if',
'in',
'into',
'is',
'it',
'no',
'not',
'of',
'on',
'or',
's',
'such',
't',
'that',
'the',
'their',
'then',
'there',
'these',
'they',
'this',
'to',
'was',
'will',
'with',
'www'
]
}
},
analyzer: {
rebuilt_cjk: {
tokenizer: 'standard',
filter: [
'cjk_width',
'lowercase',
'cjk_bigram',
'english_stop'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "cjk_example",
settings: {
analysis: {
filter: {
english_stop: {
type: "stop",
stopwords: [
"a",
"and",
"are",
"as",
"at",
"be",
"but",
"by",
"for",
"if",
"in",
"into",
"is",
"it",
"no",
"not",
"of",
"on",
"or",
"s",
"such",
"t",
"that",
"the",
"their",
"then",
"there",
"these",
"they",
"this",
"to",
"was",
"will",
"with",
"www",
],
},
},
analyzer: {
rebuilt_cjk: {
tokenizer: "standard",
filter: ["cjk_width", "lowercase", "cjk_bigram", "english_stop"],
},
},
},
},
});
console.log(response);
PUT /cjk_example
{
"settings": {
"analysis": {
"filter": {
"english_stop": {
"type": "stop",
"stopwords": [
"a", "and", "are", "as", "at", "be", "but", "by", "for",
"if", "in", "into", "is", "it", "no", "not", "of", "on",
"or", "s", "such", "t", "that", "the", "their", "then",
"there", "these", "they", "this", "to", "was", "will",
"with", "www"
]
}
},
"analyzer": {
"rebuilt_cjk": {
"tokenizer": "standard",
"filter": [
"cjk_width",
"lowercase",
"cjk_bigram",
"english_stop"
]
}
}
}
}
}
The default stopwords can be overridden with the |
czech
analyzer
The czech
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="czech_example",
settings={
"analysis": {
"filter": {
"czech_stop": {
"type": "stop",
"stopwords": "_czech_"
},
"czech_keywords": {
"type": "keyword_marker",
"keywords": [
"příklad"
]
},
"czech_stemmer": {
"type": "stemmer",
"language": "czech"
}
},
"analyzer": {
"rebuilt_czech": {
"tokenizer": "standard",
"filter": [
"lowercase",
"czech_stop",
"czech_keywords",
"czech_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'czech_example',
body: {
settings: {
analysis: {
filter: {
czech_stop: {
type: 'stop',
stopwords: '_czech_'
},
czech_keywords: {
type: 'keyword_marker',
keywords: [
'příklad'
]
},
czech_stemmer: {
type: 'stemmer',
language: 'czech'
}
},
analyzer: {
rebuilt_czech: {
tokenizer: 'standard',
filter: [
'lowercase',
'czech_stop',
'czech_keywords',
'czech_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "czech_example",
settings: {
analysis: {
filter: {
czech_stop: {
type: "stop",
stopwords: "_czech_",
},
czech_keywords: {
type: "keyword_marker",
keywords: ["příklad"],
},
czech_stemmer: {
type: "stemmer",
language: "czech",
},
},
analyzer: {
rebuilt_czech: {
tokenizer: "standard",
filter: [
"lowercase",
"czech_stop",
"czech_keywords",
"czech_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /czech_example
{
"settings": {
"analysis": {
"filter": {
"czech_stop": {
"type": "stop",
"stopwords": "_czech_"
},
"czech_keywords": {
"type": "keyword_marker",
"keywords": ["příklad"]
},
"czech_stemmer": {
"type": "stemmer",
"language": "czech"
}
},
"analyzer": {
"rebuilt_czech": {
"tokenizer": "standard",
"filter": [
"lowercase",
"czech_stop",
"czech_keywords",
"czech_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
danish
analyzer
The danish
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="danish_example",
settings={
"analysis": {
"filter": {
"danish_stop": {
"type": "stop",
"stopwords": "_danish_"
},
"danish_keywords": {
"type": "keyword_marker",
"keywords": [
"eksempel"
]
},
"danish_stemmer": {
"type": "stemmer",
"language": "danish"
}
},
"analyzer": {
"rebuilt_danish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"danish_stop",
"danish_keywords",
"danish_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'danish_example',
body: {
settings: {
analysis: {
filter: {
danish_stop: {
type: 'stop',
stopwords: '_danish_'
},
danish_keywords: {
type: 'keyword_marker',
keywords: [
'eksempel'
]
},
danish_stemmer: {
type: 'stemmer',
language: 'danish'
}
},
analyzer: {
rebuilt_danish: {
tokenizer: 'standard',
filter: [
'lowercase',
'danish_stop',
'danish_keywords',
'danish_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "danish_example",
settings: {
analysis: {
filter: {
danish_stop: {
type: "stop",
stopwords: "_danish_",
},
danish_keywords: {
type: "keyword_marker",
keywords: ["eksempel"],
},
danish_stemmer: {
type: "stemmer",
language: "danish",
},
},
analyzer: {
rebuilt_danish: {
tokenizer: "standard",
filter: [
"lowercase",
"danish_stop",
"danish_keywords",
"danish_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /danish_example
{
"settings": {
"analysis": {
"filter": {
"danish_stop": {
"type": "stop",
"stopwords": "_danish_"
},
"danish_keywords": {
"type": "keyword_marker",
"keywords": ["eksempel"]
},
"danish_stemmer": {
"type": "stemmer",
"language": "danish"
}
},
"analyzer": {
"rebuilt_danish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"danish_stop",
"danish_keywords",
"danish_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
dutch
analyzer
The dutch
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="dutch_example",
settings={
"analysis": {
"filter": {
"dutch_stop": {
"type": "stop",
"stopwords": "_dutch_"
},
"dutch_keywords": {
"type": "keyword_marker",
"keywords": [
"voorbeeld"
]
},
"dutch_stemmer": {
"type": "stemmer",
"language": "dutch"
},
"dutch_override": {
"type": "stemmer_override",
"rules": [
"fiets=>fiets",
"bromfiets=>bromfiets",
"ei=>eier",
"kind=>kinder"
]
}
},
"analyzer": {
"rebuilt_dutch": {
"tokenizer": "standard",
"filter": [
"lowercase",
"dutch_stop",
"dutch_keywords",
"dutch_override",
"dutch_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'dutch_example',
body: {
settings: {
analysis: {
filter: {
dutch_stop: {
type: 'stop',
stopwords: '_dutch_'
},
dutch_keywords: {
type: 'keyword_marker',
keywords: [
'voorbeeld'
]
},
dutch_stemmer: {
type: 'stemmer',
language: 'dutch'
},
dutch_override: {
type: 'stemmer_override',
rules: [
'fiets=>fiets',
'bromfiets=>bromfiets',
'ei=>eier',
'kind=>kinder'
]
}
},
analyzer: {
rebuilt_dutch: {
tokenizer: 'standard',
filter: [
'lowercase',
'dutch_stop',
'dutch_keywords',
'dutch_override',
'dutch_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "dutch_example",
settings: {
analysis: {
filter: {
dutch_stop: {
type: "stop",
stopwords: "_dutch_",
},
dutch_keywords: {
type: "keyword_marker",
keywords: ["voorbeeld"],
},
dutch_stemmer: {
type: "stemmer",
language: "dutch",
},
dutch_override: {
type: "stemmer_override",
rules: [
"fiets=>fiets",
"bromfiets=>bromfiets",
"ei=>eier",
"kind=>kinder",
],
},
},
analyzer: {
rebuilt_dutch: {
tokenizer: "standard",
filter: [
"lowercase",
"dutch_stop",
"dutch_keywords",
"dutch_override",
"dutch_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /dutch_example
{
"settings": {
"analysis": {
"filter": {
"dutch_stop": {
"type": "stop",
"stopwords": "_dutch_"
},
"dutch_keywords": {
"type": "keyword_marker",
"keywords": ["voorbeeld"]
},
"dutch_stemmer": {
"type": "stemmer",
"language": "dutch"
},
"dutch_override": {
"type": "stemmer_override",
"rules": [
"fiets=>fiets",
"bromfiets=>bromfiets",
"ei=>eier",
"kind=>kinder"
]
}
},
"analyzer": {
"rebuilt_dutch": {
"tokenizer": "standard",
"filter": [
"lowercase",
"dutch_stop",
"dutch_keywords",
"dutch_override",
"dutch_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
english
analyzer
The english
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="english_example",
settings={
"analysis": {
"filter": {
"english_stop": {
"type": "stop",
"stopwords": "_english_"
},
"english_keywords": {
"type": "keyword_marker",
"keywords": [
"example"
]
},
"english_stemmer": {
"type": "stemmer",
"language": "english"
},
"english_possessive_stemmer": {
"type": "stemmer",
"language": "possessive_english"
}
},
"analyzer": {
"rebuilt_english": {
"tokenizer": "standard",
"filter": [
"english_possessive_stemmer",
"lowercase",
"english_stop",
"english_keywords",
"english_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'english_example',
body: {
settings: {
analysis: {
filter: {
english_stop: {
type: 'stop',
stopwords: '_english_'
},
english_keywords: {
type: 'keyword_marker',
keywords: [
'example'
]
},
english_stemmer: {
type: 'stemmer',
language: 'english'
},
english_possessive_stemmer: {
type: 'stemmer',
language: 'possessive_english'
}
},
analyzer: {
rebuilt_english: {
tokenizer: 'standard',
filter: [
'english_possessive_stemmer',
'lowercase',
'english_stop',
'english_keywords',
'english_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "english_example",
settings: {
analysis: {
filter: {
english_stop: {
type: "stop",
stopwords: "_english_",
},
english_keywords: {
type: "keyword_marker",
keywords: ["example"],
},
english_stemmer: {
type: "stemmer",
language: "english",
},
english_possessive_stemmer: {
type: "stemmer",
language: "possessive_english",
},
},
analyzer: {
rebuilt_english: {
tokenizer: "standard",
filter: [
"english_possessive_stemmer",
"lowercase",
"english_stop",
"english_keywords",
"english_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /english_example
{
"settings": {
"analysis": {
"filter": {
"english_stop": {
"type": "stop",
"stopwords": "_english_"
},
"english_keywords": {
"type": "keyword_marker",
"keywords": ["example"]
},
"english_stemmer": {
"type": "stemmer",
"language": "english"
},
"english_possessive_stemmer": {
"type": "stemmer",
"language": "possessive_english"
}
},
"analyzer": {
"rebuilt_english": {
"tokenizer": "standard",
"filter": [
"english_possessive_stemmer",
"lowercase",
"english_stop",
"english_keywords",
"english_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
estonian
analyzer
The estonian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="estonian_example",
settings={
"analysis": {
"filter": {
"estonian_stop": {
"type": "stop",
"stopwords": "_estonian_"
},
"estonian_keywords": {
"type": "keyword_marker",
"keywords": [
"näide"
]
},
"estonian_stemmer": {
"type": "stemmer",
"language": "estonian"
}
},
"analyzer": {
"rebuilt_estonian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"estonian_stop",
"estonian_keywords",
"estonian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'estonian_example',
body: {
settings: {
analysis: {
filter: {
estonian_stop: {
type: 'stop',
stopwords: '_estonian_'
},
estonian_keywords: {
type: 'keyword_marker',
keywords: [
'näide'
]
},
estonian_stemmer: {
type: 'stemmer',
language: 'estonian'
}
},
analyzer: {
rebuilt_estonian: {
tokenizer: 'standard',
filter: [
'lowercase',
'estonian_stop',
'estonian_keywords',
'estonian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "estonian_example",
settings: {
analysis: {
filter: {
estonian_stop: {
type: "stop",
stopwords: "_estonian_",
},
estonian_keywords: {
type: "keyword_marker",
keywords: ["näide"],
},
estonian_stemmer: {
type: "stemmer",
language: "estonian",
},
},
analyzer: {
rebuilt_estonian: {
tokenizer: "standard",
filter: [
"lowercase",
"estonian_stop",
"estonian_keywords",
"estonian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /estonian_example
{
"settings": {
"analysis": {
"filter": {
"estonian_stop": {
"type": "stop",
"stopwords": "_estonian_"
},
"estonian_keywords": {
"type": "keyword_marker",
"keywords": ["näide"]
},
"estonian_stemmer": {
"type": "stemmer",
"language": "estonian"
}
},
"analyzer": {
"rebuilt_estonian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"estonian_stop",
"estonian_keywords",
"estonian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
finnish
analyzer
The finnish
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="finnish_example",
settings={
"analysis": {
"filter": {
"finnish_stop": {
"type": "stop",
"stopwords": "_finnish_"
},
"finnish_keywords": {
"type": "keyword_marker",
"keywords": [
"esimerkki"
]
},
"finnish_stemmer": {
"type": "stemmer",
"language": "finnish"
}
},
"analyzer": {
"rebuilt_finnish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"finnish_stop",
"finnish_keywords",
"finnish_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'finnish_example',
body: {
settings: {
analysis: {
filter: {
finnish_stop: {
type: 'stop',
stopwords: '_finnish_'
},
finnish_keywords: {
type: 'keyword_marker',
keywords: [
'esimerkki'
]
},
finnish_stemmer: {
type: 'stemmer',
language: 'finnish'
}
},
analyzer: {
rebuilt_finnish: {
tokenizer: 'standard',
filter: [
'lowercase',
'finnish_stop',
'finnish_keywords',
'finnish_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "finnish_example",
settings: {
analysis: {
filter: {
finnish_stop: {
type: "stop",
stopwords: "_finnish_",
},
finnish_keywords: {
type: "keyword_marker",
keywords: ["esimerkki"],
},
finnish_stemmer: {
type: "stemmer",
language: "finnish",
},
},
analyzer: {
rebuilt_finnish: {
tokenizer: "standard",
filter: [
"lowercase",
"finnish_stop",
"finnish_keywords",
"finnish_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /finnish_example
{
"settings": {
"analysis": {
"filter": {
"finnish_stop": {
"type": "stop",
"stopwords": "_finnish_"
},
"finnish_keywords": {
"type": "keyword_marker",
"keywords": ["esimerkki"]
},
"finnish_stemmer": {
"type": "stemmer",
"language": "finnish"
}
},
"analyzer": {
"rebuilt_finnish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"finnish_stop",
"finnish_keywords",
"finnish_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
french
analyzer
The french
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="french_example",
settings={
"analysis": {
"filter": {
"french_elision": {
"type": "elision",
"articles_case": True,
"articles": [
"l",
"m",
"t",
"qu",
"n",
"s",
"j",
"d",
"c",
"jusqu",
"quoiqu",
"lorsqu",
"puisqu"
]
},
"french_stop": {
"type": "stop",
"stopwords": "_french_"
},
"french_keywords": {
"type": "keyword_marker",
"keywords": [
"Example"
]
},
"french_stemmer": {
"type": "stemmer",
"language": "light_french"
}
},
"analyzer": {
"rebuilt_french": {
"tokenizer": "standard",
"filter": [
"french_elision",
"lowercase",
"french_stop",
"french_keywords",
"french_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'french_example',
body: {
settings: {
analysis: {
filter: {
french_elision: {
type: 'elision',
articles_case: true,
articles: [
'l',
'm',
't',
'qu',
'n',
's',
'j',
'd',
'c',
'jusqu',
'quoiqu',
'lorsqu',
'puisqu'
]
},
french_stop: {
type: 'stop',
stopwords: '_french_'
},
french_keywords: {
type: 'keyword_marker',
keywords: [
'Example'
]
},
french_stemmer: {
type: 'stemmer',
language: 'light_french'
}
},
analyzer: {
rebuilt_french: {
tokenizer: 'standard',
filter: [
'french_elision',
'lowercase',
'french_stop',
'french_keywords',
'french_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "french_example",
settings: {
analysis: {
filter: {
french_elision: {
type: "elision",
articles_case: true,
articles: [
"l",
"m",
"t",
"qu",
"n",
"s",
"j",
"d",
"c",
"jusqu",
"quoiqu",
"lorsqu",
"puisqu",
],
},
french_stop: {
type: "stop",
stopwords: "_french_",
},
french_keywords: {
type: "keyword_marker",
keywords: ["Example"],
},
french_stemmer: {
type: "stemmer",
language: "light_french",
},
},
analyzer: {
rebuilt_french: {
tokenizer: "standard",
filter: [
"french_elision",
"lowercase",
"french_stop",
"french_keywords",
"french_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /french_example
{
"settings": {
"analysis": {
"filter": {
"french_elision": {
"type": "elision",
"articles_case": true,
"articles": [
"l", "m", "t", "qu", "n", "s",
"j", "d", "c", "jusqu", "quoiqu",
"lorsqu", "puisqu"
]
},
"french_stop": {
"type": "stop",
"stopwords": "_french_"
},
"french_keywords": {
"type": "keyword_marker",
"keywords": ["Example"]
},
"french_stemmer": {
"type": "stemmer",
"language": "light_french"
}
},
"analyzer": {
"rebuilt_french": {
"tokenizer": "standard",
"filter": [
"french_elision",
"lowercase",
"french_stop",
"french_keywords",
"french_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
galician
analyzer
The galician
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="galician_example",
settings={
"analysis": {
"filter": {
"galician_stop": {
"type": "stop",
"stopwords": "_galician_"
},
"galician_keywords": {
"type": "keyword_marker",
"keywords": [
"exemplo"
]
},
"galician_stemmer": {
"type": "stemmer",
"language": "galician"
}
},
"analyzer": {
"rebuilt_galician": {
"tokenizer": "standard",
"filter": [
"lowercase",
"galician_stop",
"galician_keywords",
"galician_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'galician_example',
body: {
settings: {
analysis: {
filter: {
galician_stop: {
type: 'stop',
stopwords: '_galician_'
},
galician_keywords: {
type: 'keyword_marker',
keywords: [
'exemplo'
]
},
galician_stemmer: {
type: 'stemmer',
language: 'galician'
}
},
analyzer: {
rebuilt_galician: {
tokenizer: 'standard',
filter: [
'lowercase',
'galician_stop',
'galician_keywords',
'galician_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "galician_example",
settings: {
analysis: {
filter: {
galician_stop: {
type: "stop",
stopwords: "_galician_",
},
galician_keywords: {
type: "keyword_marker",
keywords: ["exemplo"],
},
galician_stemmer: {
type: "stemmer",
language: "galician",
},
},
analyzer: {
rebuilt_galician: {
tokenizer: "standard",
filter: [
"lowercase",
"galician_stop",
"galician_keywords",
"galician_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /galician_example
{
"settings": {
"analysis": {
"filter": {
"galician_stop": {
"type": "stop",
"stopwords": "_galician_"
},
"galician_keywords": {
"type": "keyword_marker",
"keywords": ["exemplo"]
},
"galician_stemmer": {
"type": "stemmer",
"language": "galician"
}
},
"analyzer": {
"rebuilt_galician": {
"tokenizer": "standard",
"filter": [
"lowercase",
"galician_stop",
"galician_keywords",
"galician_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
german
analyzer
The german
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="german_example",
settings={
"analysis": {
"filter": {
"german_stop": {
"type": "stop",
"stopwords": "_german_"
},
"german_keywords": {
"type": "keyword_marker",
"keywords": [
"Beispiel"
]
},
"german_stemmer": {
"type": "stemmer",
"language": "light_german"
}
},
"analyzer": {
"rebuilt_german": {
"tokenizer": "standard",
"filter": [
"lowercase",
"german_stop",
"german_keywords",
"german_normalization",
"german_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'german_example',
body: {
settings: {
analysis: {
filter: {
german_stop: {
type: 'stop',
stopwords: '_german_'
},
german_keywords: {
type: 'keyword_marker',
keywords: [
'Beispiel'
]
},
german_stemmer: {
type: 'stemmer',
language: 'light_german'
}
},
analyzer: {
rebuilt_german: {
tokenizer: 'standard',
filter: [
'lowercase',
'german_stop',
'german_keywords',
'german_normalization',
'german_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "german_example",
settings: {
analysis: {
filter: {
german_stop: {
type: "stop",
stopwords: "_german_",
},
german_keywords: {
type: "keyword_marker",
keywords: ["Beispiel"],
},
german_stemmer: {
type: "stemmer",
language: "light_german",
},
},
analyzer: {
rebuilt_german: {
tokenizer: "standard",
filter: [
"lowercase",
"german_stop",
"german_keywords",
"german_normalization",
"german_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /german_example
{
"settings": {
"analysis": {
"filter": {
"german_stop": {
"type": "stop",
"stopwords": "_german_"
},
"german_keywords": {
"type": "keyword_marker",
"keywords": ["Beispiel"]
},
"german_stemmer": {
"type": "stemmer",
"language": "light_german"
}
},
"analyzer": {
"rebuilt_german": {
"tokenizer": "standard",
"filter": [
"lowercase",
"german_stop",
"german_keywords",
"german_normalization",
"german_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
greek
analyzer
The greek
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="greek_example",
settings={
"analysis": {
"filter": {
"greek_stop": {
"type": "stop",
"stopwords": "_greek_"
},
"greek_lowercase": {
"type": "lowercase",
"language": "greek"
},
"greek_keywords": {
"type": "keyword_marker",
"keywords": [
"παράδειγμα"
]
},
"greek_stemmer": {
"type": "stemmer",
"language": "greek"
}
},
"analyzer": {
"rebuilt_greek": {
"tokenizer": "standard",
"filter": [
"greek_lowercase",
"greek_stop",
"greek_keywords",
"greek_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'greek_example',
body: {
settings: {
analysis: {
filter: {
greek_stop: {
type: 'stop',
stopwords: '_greek_'
},
greek_lowercase: {
type: 'lowercase',
language: 'greek'
},
greek_keywords: {
type: 'keyword_marker',
keywords: [
'παράδειγμα'
]
},
greek_stemmer: {
type: 'stemmer',
language: 'greek'
}
},
analyzer: {
rebuilt_greek: {
tokenizer: 'standard',
filter: [
'greek_lowercase',
'greek_stop',
'greek_keywords',
'greek_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "greek_example",
settings: {
analysis: {
filter: {
greek_stop: {
type: "stop",
stopwords: "_greek_",
},
greek_lowercase: {
type: "lowercase",
language: "greek",
},
greek_keywords: {
type: "keyword_marker",
keywords: ["παράδειγμα"],
},
greek_stemmer: {
type: "stemmer",
language: "greek",
},
},
analyzer: {
rebuilt_greek: {
tokenizer: "standard",
filter: [
"greek_lowercase",
"greek_stop",
"greek_keywords",
"greek_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /greek_example
{
"settings": {
"analysis": {
"filter": {
"greek_stop": {
"type": "stop",
"stopwords": "_greek_"
},
"greek_lowercase": {
"type": "lowercase",
"language": "greek"
},
"greek_keywords": {
"type": "keyword_marker",
"keywords": ["παράδειγμα"]
},
"greek_stemmer": {
"type": "stemmer",
"language": "greek"
}
},
"analyzer": {
"rebuilt_greek": {
"tokenizer": "standard",
"filter": [
"greek_lowercase",
"greek_stop",
"greek_keywords",
"greek_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
hindi
analyzer
The hindi
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="hindi_example",
settings={
"analysis": {
"filter": {
"hindi_stop": {
"type": "stop",
"stopwords": "_hindi_"
},
"hindi_keywords": {
"type": "keyword_marker",
"keywords": [
"उदाहरण"
]
},
"hindi_stemmer": {
"type": "stemmer",
"language": "hindi"
}
},
"analyzer": {
"rebuilt_hindi": {
"tokenizer": "standard",
"filter": [
"lowercase",
"decimal_digit",
"hindi_keywords",
"indic_normalization",
"hindi_normalization",
"hindi_stop",
"hindi_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'hindi_example',
body: {
settings: {
analysis: {
filter: {
hindi_stop: {
type: 'stop',
stopwords: '_hindi_'
},
hindi_keywords: {
type: 'keyword_marker',
keywords: [
'उदाहरण'
]
},
hindi_stemmer: {
type: 'stemmer',
language: 'hindi'
}
},
analyzer: {
rebuilt_hindi: {
tokenizer: 'standard',
filter: [
'lowercase',
'decimal_digit',
'hindi_keywords',
'indic_normalization',
'hindi_normalization',
'hindi_stop',
'hindi_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "hindi_example",
settings: {
analysis: {
filter: {
hindi_stop: {
type: "stop",
stopwords: "_hindi_",
},
hindi_keywords: {
type: "keyword_marker",
keywords: ["उदाहरण"],
},
hindi_stemmer: {
type: "stemmer",
language: "hindi",
},
},
analyzer: {
rebuilt_hindi: {
tokenizer: "standard",
filter: [
"lowercase",
"decimal_digit",
"hindi_keywords",
"indic_normalization",
"hindi_normalization",
"hindi_stop",
"hindi_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /hindi_example
{
"settings": {
"analysis": {
"filter": {
"hindi_stop": {
"type": "stop",
"stopwords": "_hindi_"
},
"hindi_keywords": {
"type": "keyword_marker",
"keywords": ["उदाहरण"]
},
"hindi_stemmer": {
"type": "stemmer",
"language": "hindi"
}
},
"analyzer": {
"rebuilt_hindi": {
"tokenizer": "standard",
"filter": [
"lowercase",
"decimal_digit",
"hindi_keywords",
"indic_normalization",
"hindi_normalization",
"hindi_stop",
"hindi_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
hungarian
analyzer
The hungarian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="hungarian_example",
settings={
"analysis": {
"filter": {
"hungarian_stop": {
"type": "stop",
"stopwords": "_hungarian_"
},
"hungarian_keywords": {
"type": "keyword_marker",
"keywords": [
"példa"
]
},
"hungarian_stemmer": {
"type": "stemmer",
"language": "hungarian"
}
},
"analyzer": {
"rebuilt_hungarian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"hungarian_stop",
"hungarian_keywords",
"hungarian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'hungarian_example',
body: {
settings: {
analysis: {
filter: {
hungarian_stop: {
type: 'stop',
stopwords: '_hungarian_'
},
hungarian_keywords: {
type: 'keyword_marker',
keywords: [
'példa'
]
},
hungarian_stemmer: {
type: 'stemmer',
language: 'hungarian'
}
},
analyzer: {
rebuilt_hungarian: {
tokenizer: 'standard',
filter: [
'lowercase',
'hungarian_stop',
'hungarian_keywords',
'hungarian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "hungarian_example",
settings: {
analysis: {
filter: {
hungarian_stop: {
type: "stop",
stopwords: "_hungarian_",
},
hungarian_keywords: {
type: "keyword_marker",
keywords: ["példa"],
},
hungarian_stemmer: {
type: "stemmer",
language: "hungarian",
},
},
analyzer: {
rebuilt_hungarian: {
tokenizer: "standard",
filter: [
"lowercase",
"hungarian_stop",
"hungarian_keywords",
"hungarian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /hungarian_example
{
"settings": {
"analysis": {
"filter": {
"hungarian_stop": {
"type": "stop",
"stopwords": "_hungarian_"
},
"hungarian_keywords": {
"type": "keyword_marker",
"keywords": ["példa"]
},
"hungarian_stemmer": {
"type": "stemmer",
"language": "hungarian"
}
},
"analyzer": {
"rebuilt_hungarian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"hungarian_stop",
"hungarian_keywords",
"hungarian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
indonesian
analyzer
The indonesian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="indonesian_example",
settings={
"analysis": {
"filter": {
"indonesian_stop": {
"type": "stop",
"stopwords": "_indonesian_"
},
"indonesian_keywords": {
"type": "keyword_marker",
"keywords": [
"contoh"
]
},
"indonesian_stemmer": {
"type": "stemmer",
"language": "indonesian"
}
},
"analyzer": {
"rebuilt_indonesian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"indonesian_stop",
"indonesian_keywords",
"indonesian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'indonesian_example',
body: {
settings: {
analysis: {
filter: {
indonesian_stop: {
type: 'stop',
stopwords: '_indonesian_'
},
indonesian_keywords: {
type: 'keyword_marker',
keywords: [
'contoh'
]
},
indonesian_stemmer: {
type: 'stemmer',
language: 'indonesian'
}
},
analyzer: {
rebuilt_indonesian: {
tokenizer: 'standard',
filter: [
'lowercase',
'indonesian_stop',
'indonesian_keywords',
'indonesian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "indonesian_example",
settings: {
analysis: {
filter: {
indonesian_stop: {
type: "stop",
stopwords: "_indonesian_",
},
indonesian_keywords: {
type: "keyword_marker",
keywords: ["contoh"],
},
indonesian_stemmer: {
type: "stemmer",
language: "indonesian",
},
},
analyzer: {
rebuilt_indonesian: {
tokenizer: "standard",
filter: [
"lowercase",
"indonesian_stop",
"indonesian_keywords",
"indonesian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /indonesian_example
{
"settings": {
"analysis": {
"filter": {
"indonesian_stop": {
"type": "stop",
"stopwords": "_indonesian_"
},
"indonesian_keywords": {
"type": "keyword_marker",
"keywords": ["contoh"]
},
"indonesian_stemmer": {
"type": "stemmer",
"language": "indonesian"
}
},
"analyzer": {
"rebuilt_indonesian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"indonesian_stop",
"indonesian_keywords",
"indonesian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
irish
analyzer
The irish
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="irish_example",
settings={
"analysis": {
"filter": {
"irish_hyphenation": {
"type": "stop",
"stopwords": [
"h",
"n",
"t"
],
"ignore_case": True
},
"irish_elision": {
"type": "elision",
"articles": [
"d",
"m",
"b"
],
"articles_case": True
},
"irish_stop": {
"type": "stop",
"stopwords": "_irish_"
},
"irish_lowercase": {
"type": "lowercase",
"language": "irish"
},
"irish_keywords": {
"type": "keyword_marker",
"keywords": [
"sampla"
]
},
"irish_stemmer": {
"type": "stemmer",
"language": "irish"
}
},
"analyzer": {
"rebuilt_irish": {
"tokenizer": "standard",
"filter": [
"irish_hyphenation",
"irish_elision",
"irish_lowercase",
"irish_stop",
"irish_keywords",
"irish_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'irish_example',
body: {
settings: {
analysis: {
filter: {
irish_hyphenation: {
type: 'stop',
stopwords: [
'h',
'n',
't'
],
ignore_case: true
},
irish_elision: {
type: 'elision',
articles: [
'd',
'm',
'b'
],
articles_case: true
},
irish_stop: {
type: 'stop',
stopwords: '_irish_'
},
irish_lowercase: {
type: 'lowercase',
language: 'irish'
},
irish_keywords: {
type: 'keyword_marker',
keywords: [
'sampla'
]
},
irish_stemmer: {
type: 'stemmer',
language: 'irish'
}
},
analyzer: {
rebuilt_irish: {
tokenizer: 'standard',
filter: [
'irish_hyphenation',
'irish_elision',
'irish_lowercase',
'irish_stop',
'irish_keywords',
'irish_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "irish_example",
settings: {
analysis: {
filter: {
irish_hyphenation: {
type: "stop",
stopwords: ["h", "n", "t"],
ignore_case: true,
},
irish_elision: {
type: "elision",
articles: ["d", "m", "b"],
articles_case: true,
},
irish_stop: {
type: "stop",
stopwords: "_irish_",
},
irish_lowercase: {
type: "lowercase",
language: "irish",
},
irish_keywords: {
type: "keyword_marker",
keywords: ["sampla"],
},
irish_stemmer: {
type: "stemmer",
language: "irish",
},
},
analyzer: {
rebuilt_irish: {
tokenizer: "standard",
filter: [
"irish_hyphenation",
"irish_elision",
"irish_lowercase",
"irish_stop",
"irish_keywords",
"irish_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /irish_example
{
"settings": {
"analysis": {
"filter": {
"irish_hyphenation": {
"type": "stop",
"stopwords": [ "h", "n", "t" ],
"ignore_case": true
},
"irish_elision": {
"type": "elision",
"articles": [ "d", "m", "b" ],
"articles_case": true
},
"irish_stop": {
"type": "stop",
"stopwords": "_irish_"
},
"irish_lowercase": {
"type": "lowercase",
"language": "irish"
},
"irish_keywords": {
"type": "keyword_marker",
"keywords": ["sampla"]
},
"irish_stemmer": {
"type": "stemmer",
"language": "irish"
}
},
"analyzer": {
"rebuilt_irish": {
"tokenizer": "standard",
"filter": [
"irish_hyphenation",
"irish_elision",
"irish_lowercase",
"irish_stop",
"irish_keywords",
"irish_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
italian
analyzer
The italian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="italian_example",
settings={
"analysis": {
"filter": {
"italian_elision": {
"type": "elision",
"articles": [
"c",
"l",
"all",
"dall",
"dell",
"nell",
"sull",
"coll",
"pell",
"gl",
"agl",
"dagl",
"degl",
"negl",
"sugl",
"un",
"m",
"t",
"s",
"v",
"d"
],
"articles_case": True
},
"italian_stop": {
"type": "stop",
"stopwords": "_italian_"
},
"italian_keywords": {
"type": "keyword_marker",
"keywords": [
"esempio"
]
},
"italian_stemmer": {
"type": "stemmer",
"language": "light_italian"
}
},
"analyzer": {
"rebuilt_italian": {
"tokenizer": "standard",
"filter": [
"italian_elision",
"lowercase",
"italian_stop",
"italian_keywords",
"italian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'italian_example',
body: {
settings: {
analysis: {
filter: {
italian_elision: {
type: 'elision',
articles: [
'c',
'l',
'all',
'dall',
'dell',
'nell',
'sull',
'coll',
'pell',
'gl',
'agl',
'dagl',
'degl',
'negl',
'sugl',
'un',
'm',
't',
's',
'v',
'd'
],
articles_case: true
},
italian_stop: {
type: 'stop',
stopwords: '_italian_'
},
italian_keywords: {
type: 'keyword_marker',
keywords: [
'esempio'
]
},
italian_stemmer: {
type: 'stemmer',
language: 'light_italian'
}
},
analyzer: {
rebuilt_italian: {
tokenizer: 'standard',
filter: [
'italian_elision',
'lowercase',
'italian_stop',
'italian_keywords',
'italian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "italian_example",
settings: {
analysis: {
filter: {
italian_elision: {
type: "elision",
articles: [
"c",
"l",
"all",
"dall",
"dell",
"nell",
"sull",
"coll",
"pell",
"gl",
"agl",
"dagl",
"degl",
"negl",
"sugl",
"un",
"m",
"t",
"s",
"v",
"d",
],
articles_case: true,
},
italian_stop: {
type: "stop",
stopwords: "_italian_",
},
italian_keywords: {
type: "keyword_marker",
keywords: ["esempio"],
},
italian_stemmer: {
type: "stemmer",
language: "light_italian",
},
},
analyzer: {
rebuilt_italian: {
tokenizer: "standard",
filter: [
"italian_elision",
"lowercase",
"italian_stop",
"italian_keywords",
"italian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /italian_example
{
"settings": {
"analysis": {
"filter": {
"italian_elision": {
"type": "elision",
"articles": [
"c", "l", "all", "dall", "dell",
"nell", "sull", "coll", "pell",
"gl", "agl", "dagl", "degl", "negl",
"sugl", "un", "m", "t", "s", "v", "d"
],
"articles_case": true
},
"italian_stop": {
"type": "stop",
"stopwords": "_italian_"
},
"italian_keywords": {
"type": "keyword_marker",
"keywords": ["esempio"]
},
"italian_stemmer": {
"type": "stemmer",
"language": "light_italian"
}
},
"analyzer": {
"rebuilt_italian": {
"tokenizer": "standard",
"filter": [
"italian_elision",
"lowercase",
"italian_stop",
"italian_keywords",
"italian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
latvian
analyzer
The latvian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="latvian_example",
settings={
"analysis": {
"filter": {
"latvian_stop": {
"type": "stop",
"stopwords": "_latvian_"
},
"latvian_keywords": {
"type": "keyword_marker",
"keywords": [
"piemērs"
]
},
"latvian_stemmer": {
"type": "stemmer",
"language": "latvian"
}
},
"analyzer": {
"rebuilt_latvian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"latvian_stop",
"latvian_keywords",
"latvian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'latvian_example',
body: {
settings: {
analysis: {
filter: {
latvian_stop: {
type: 'stop',
stopwords: '_latvian_'
},
latvian_keywords: {
type: 'keyword_marker',
keywords: [
'piemērs'
]
},
latvian_stemmer: {
type: 'stemmer',
language: 'latvian'
}
},
analyzer: {
rebuilt_latvian: {
tokenizer: 'standard',
filter: [
'lowercase',
'latvian_stop',
'latvian_keywords',
'latvian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "latvian_example",
settings: {
analysis: {
filter: {
latvian_stop: {
type: "stop",
stopwords: "_latvian_",
},
latvian_keywords: {
type: "keyword_marker",
keywords: ["piemērs"],
},
latvian_stemmer: {
type: "stemmer",
language: "latvian",
},
},
analyzer: {
rebuilt_latvian: {
tokenizer: "standard",
filter: [
"lowercase",
"latvian_stop",
"latvian_keywords",
"latvian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /latvian_example
{
"settings": {
"analysis": {
"filter": {
"latvian_stop": {
"type": "stop",
"stopwords": "_latvian_"
},
"latvian_keywords": {
"type": "keyword_marker",
"keywords": ["piemērs"]
},
"latvian_stemmer": {
"type": "stemmer",
"language": "latvian"
}
},
"analyzer": {
"rebuilt_latvian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"latvian_stop",
"latvian_keywords",
"latvian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
lithuanian
analyzer
The lithuanian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="lithuanian_example",
settings={
"analysis": {
"filter": {
"lithuanian_stop": {
"type": "stop",
"stopwords": "_lithuanian_"
},
"lithuanian_keywords": {
"type": "keyword_marker",
"keywords": [
"pavyzdys"
]
},
"lithuanian_stemmer": {
"type": "stemmer",
"language": "lithuanian"
}
},
"analyzer": {
"rebuilt_lithuanian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"lithuanian_stop",
"lithuanian_keywords",
"lithuanian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'lithuanian_example',
body: {
settings: {
analysis: {
filter: {
lithuanian_stop: {
type: 'stop',
stopwords: '_lithuanian_'
},
lithuanian_keywords: {
type: 'keyword_marker',
keywords: [
'pavyzdys'
]
},
lithuanian_stemmer: {
type: 'stemmer',
language: 'lithuanian'
}
},
analyzer: {
rebuilt_lithuanian: {
tokenizer: 'standard',
filter: [
'lowercase',
'lithuanian_stop',
'lithuanian_keywords',
'lithuanian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "lithuanian_example",
settings: {
analysis: {
filter: {
lithuanian_stop: {
type: "stop",
stopwords: "_lithuanian_",
},
lithuanian_keywords: {
type: "keyword_marker",
keywords: ["pavyzdys"],
},
lithuanian_stemmer: {
type: "stemmer",
language: "lithuanian",
},
},
analyzer: {
rebuilt_lithuanian: {
tokenizer: "standard",
filter: [
"lowercase",
"lithuanian_stop",
"lithuanian_keywords",
"lithuanian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /lithuanian_example
{
"settings": {
"analysis": {
"filter": {
"lithuanian_stop": {
"type": "stop",
"stopwords": "_lithuanian_"
},
"lithuanian_keywords": {
"type": "keyword_marker",
"keywords": ["pavyzdys"]
},
"lithuanian_stemmer": {
"type": "stemmer",
"language": "lithuanian"
}
},
"analyzer": {
"rebuilt_lithuanian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"lithuanian_stop",
"lithuanian_keywords",
"lithuanian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
norwegian
analyzer
The norwegian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="norwegian_example",
settings={
"analysis": {
"filter": {
"norwegian_stop": {
"type": "stop",
"stopwords": "_norwegian_"
},
"norwegian_keywords": {
"type": "keyword_marker",
"keywords": [
"eksempel"
]
},
"norwegian_stemmer": {
"type": "stemmer",
"language": "norwegian"
}
},
"analyzer": {
"rebuilt_norwegian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"norwegian_stop",
"norwegian_keywords",
"norwegian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'norwegian_example',
body: {
settings: {
analysis: {
filter: {
norwegian_stop: {
type: 'stop',
stopwords: '_norwegian_'
},
norwegian_keywords: {
type: 'keyword_marker',
keywords: [
'eksempel'
]
},
norwegian_stemmer: {
type: 'stemmer',
language: 'norwegian'
}
},
analyzer: {
rebuilt_norwegian: {
tokenizer: 'standard',
filter: [
'lowercase',
'norwegian_stop',
'norwegian_keywords',
'norwegian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "norwegian_example",
settings: {
analysis: {
filter: {
norwegian_stop: {
type: "stop",
stopwords: "_norwegian_",
},
norwegian_keywords: {
type: "keyword_marker",
keywords: ["eksempel"],
},
norwegian_stemmer: {
type: "stemmer",
language: "norwegian",
},
},
analyzer: {
rebuilt_norwegian: {
tokenizer: "standard",
filter: [
"lowercase",
"norwegian_stop",
"norwegian_keywords",
"norwegian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /norwegian_example
{
"settings": {
"analysis": {
"filter": {
"norwegian_stop": {
"type": "stop",
"stopwords": "_norwegian_"
},
"norwegian_keywords": {
"type": "keyword_marker",
"keywords": ["eksempel"]
},
"norwegian_stemmer": {
"type": "stemmer",
"language": "norwegian"
}
},
"analyzer": {
"rebuilt_norwegian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"norwegian_stop",
"norwegian_keywords",
"norwegian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
persian
analyzer
The persian
analyzer could be reimplemented as a custom
analyzer as follows:
response = client.indices.create(
index: 'persian_example',
body: {
settings: {
analysis: {
char_filter: {
zero_width_spaces: {
type: 'mapping',
mappings: [
'\\u200C=>\\u0020'
]
}
},
filter: {
persian_stop: {
type: 'stop',
stopwords: '_persian_'
}
},
analyzer: {
rebuilt_persian: {
tokenizer: 'standard',
char_filter: [
'zero_width_spaces'
],
filter: [
'lowercase',
'decimal_digit',
'arabic_normalization',
'persian_normalization',
'persian_stop'
]
}
}
}
}
}
)
puts response
PUT /persian_example
{
"settings": {
"analysis": {
"char_filter": {
"zero_width_spaces": {
"type": "mapping",
"mappings": [ "\\u200C=>\\u0020"]
}
},
"filter": {
"persian_stop": {
"type": "stop",
"stopwords": "_persian_"
}
},
"analyzer": {
"rebuilt_persian": {
"tokenizer": "standard",
"char_filter": [ "zero_width_spaces" ],
"filter": [
"lowercase",
"decimal_digit",
"arabic_normalization",
"persian_normalization",
"persian_stop"
]
}
}
}
}
}
Replaces zero-width non-joiners with an ASCII space. | |
The default stopwords can be overridden with the |
portuguese
analyzer
The portuguese
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="portuguese_example",
settings={
"analysis": {
"filter": {
"portuguese_stop": {
"type": "stop",
"stopwords": "_portuguese_"
},
"portuguese_keywords": {
"type": "keyword_marker",
"keywords": [
"exemplo"
]
},
"portuguese_stemmer": {
"type": "stemmer",
"language": "light_portuguese"
}
},
"analyzer": {
"rebuilt_portuguese": {
"tokenizer": "standard",
"filter": [
"lowercase",
"portuguese_stop",
"portuguese_keywords",
"portuguese_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'portuguese_example',
body: {
settings: {
analysis: {
filter: {
portuguese_stop: {
type: 'stop',
stopwords: '_portuguese_'
},
portuguese_keywords: {
type: 'keyword_marker',
keywords: [
'exemplo'
]
},
portuguese_stemmer: {
type: 'stemmer',
language: 'light_portuguese'
}
},
analyzer: {
rebuilt_portuguese: {
tokenizer: 'standard',
filter: [
'lowercase',
'portuguese_stop',
'portuguese_keywords',
'portuguese_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "portuguese_example",
settings: {
analysis: {
filter: {
portuguese_stop: {
type: "stop",
stopwords: "_portuguese_",
},
portuguese_keywords: {
type: "keyword_marker",
keywords: ["exemplo"],
},
portuguese_stemmer: {
type: "stemmer",
language: "light_portuguese",
},
},
analyzer: {
rebuilt_portuguese: {
tokenizer: "standard",
filter: [
"lowercase",
"portuguese_stop",
"portuguese_keywords",
"portuguese_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /portuguese_example
{
"settings": {
"analysis": {
"filter": {
"portuguese_stop": {
"type": "stop",
"stopwords": "_portuguese_"
},
"portuguese_keywords": {
"type": "keyword_marker",
"keywords": ["exemplo"]
},
"portuguese_stemmer": {
"type": "stemmer",
"language": "light_portuguese"
}
},
"analyzer": {
"rebuilt_portuguese": {
"tokenizer": "standard",
"filter": [
"lowercase",
"portuguese_stop",
"portuguese_keywords",
"portuguese_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
romanian
analyzer
The romanian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="romanian_example",
settings={
"analysis": {
"filter": {
"romanian_stop": {
"type": "stop",
"stopwords": "_romanian_"
},
"romanian_keywords": {
"type": "keyword_marker",
"keywords": [
"exemplu"
]
},
"romanian_stemmer": {
"type": "stemmer",
"language": "romanian"
}
},
"analyzer": {
"rebuilt_romanian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"romanian_stop",
"romanian_keywords",
"romanian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'romanian_example',
body: {
settings: {
analysis: {
filter: {
romanian_stop: {
type: 'stop',
stopwords: '_romanian_'
},
romanian_keywords: {
type: 'keyword_marker',
keywords: [
'exemplu'
]
},
romanian_stemmer: {
type: 'stemmer',
language: 'romanian'
}
},
analyzer: {
rebuilt_romanian: {
tokenizer: 'standard',
filter: [
'lowercase',
'romanian_stop',
'romanian_keywords',
'romanian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "romanian_example",
settings: {
analysis: {
filter: {
romanian_stop: {
type: "stop",
stopwords: "_romanian_",
},
romanian_keywords: {
type: "keyword_marker",
keywords: ["exemplu"],
},
romanian_stemmer: {
type: "stemmer",
language: "romanian",
},
},
analyzer: {
rebuilt_romanian: {
tokenizer: "standard",
filter: [
"lowercase",
"romanian_stop",
"romanian_keywords",
"romanian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /romanian_example
{
"settings": {
"analysis": {
"filter": {
"romanian_stop": {
"type": "stop",
"stopwords": "_romanian_"
},
"romanian_keywords": {
"type": "keyword_marker",
"keywords": ["exemplu"]
},
"romanian_stemmer": {
"type": "stemmer",
"language": "romanian"
}
},
"analyzer": {
"rebuilt_romanian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"romanian_stop",
"romanian_keywords",
"romanian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
russian
analyzer
The russian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="russian_example",
settings={
"analysis": {
"filter": {
"russian_stop": {
"type": "stop",
"stopwords": "_russian_"
},
"russian_keywords": {
"type": "keyword_marker",
"keywords": [
"пример"
]
},
"russian_stemmer": {
"type": "stemmer",
"language": "russian"
}
},
"analyzer": {
"rebuilt_russian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"russian_stop",
"russian_keywords",
"russian_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'russian_example',
body: {
settings: {
analysis: {
filter: {
russian_stop: {
type: 'stop',
stopwords: '_russian_'
},
russian_keywords: {
type: 'keyword_marker',
keywords: [
'пример'
]
},
russian_stemmer: {
type: 'stemmer',
language: 'russian'
}
},
analyzer: {
rebuilt_russian: {
tokenizer: 'standard',
filter: [
'lowercase',
'russian_stop',
'russian_keywords',
'russian_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "russian_example",
settings: {
analysis: {
filter: {
russian_stop: {
type: "stop",
stopwords: "_russian_",
},
russian_keywords: {
type: "keyword_marker",
keywords: ["пример"],
},
russian_stemmer: {
type: "stemmer",
language: "russian",
},
},
analyzer: {
rebuilt_russian: {
tokenizer: "standard",
filter: [
"lowercase",
"russian_stop",
"russian_keywords",
"russian_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /russian_example
{
"settings": {
"analysis": {
"filter": {
"russian_stop": {
"type": "stop",
"stopwords": "_russian_"
},
"russian_keywords": {
"type": "keyword_marker",
"keywords": ["пример"]
},
"russian_stemmer": {
"type": "stemmer",
"language": "russian"
}
},
"analyzer": {
"rebuilt_russian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"russian_stop",
"russian_keywords",
"russian_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
serbian
analyzer
The serbian
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="serbian_example",
settings={
"analysis": {
"filter": {
"serbian_stop": {
"type": "stop",
"stopwords": "_serbian_"
},
"serbian_keywords": {
"type": "keyword_marker",
"keywords": [
"пример"
]
},
"serbian_stemmer": {
"type": "stemmer",
"language": "serbian"
}
},
"analyzer": {
"rebuilt_serbian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"serbian_stop",
"serbian_keywords",
"serbian_stemmer",
"serbian_normalization"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'serbian_example',
body: {
settings: {
analysis: {
filter: {
serbian_stop: {
type: 'stop',
stopwords: '_serbian_'
},
serbian_keywords: {
type: 'keyword_marker',
keywords: [
'пример'
]
},
serbian_stemmer: {
type: 'stemmer',
language: 'serbian'
}
},
analyzer: {
rebuilt_serbian: {
tokenizer: 'standard',
filter: [
'lowercase',
'serbian_stop',
'serbian_keywords',
'serbian_stemmer',
'serbian_normalization'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "serbian_example",
settings: {
analysis: {
filter: {
serbian_stop: {
type: "stop",
stopwords: "_serbian_",
},
serbian_keywords: {
type: "keyword_marker",
keywords: ["пример"],
},
serbian_stemmer: {
type: "stemmer",
language: "serbian",
},
},
analyzer: {
rebuilt_serbian: {
tokenizer: "standard",
filter: [
"lowercase",
"serbian_stop",
"serbian_keywords",
"serbian_stemmer",
"serbian_normalization",
],
},
},
},
},
});
console.log(response);
PUT /serbian_example
{
"settings": {
"analysis": {
"filter": {
"serbian_stop": {
"type": "stop",
"stopwords": "_serbian_"
},
"serbian_keywords": {
"type": "keyword_marker",
"keywords": ["пример"]
},
"serbian_stemmer": {
"type": "stemmer",
"language": "serbian"
}
},
"analyzer": {
"rebuilt_serbian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"serbian_stop",
"serbian_keywords",
"serbian_stemmer",
"serbian_normalization"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
sorani
analyzer
The sorani
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="sorani_example",
settings={
"analysis": {
"filter": {
"sorani_stop": {
"type": "stop",
"stopwords": "_sorani_"
},
"sorani_keywords": {
"type": "keyword_marker",
"keywords": [
"mînak"
]
},
"sorani_stemmer": {
"type": "stemmer",
"language": "sorani"
}
},
"analyzer": {
"rebuilt_sorani": {
"tokenizer": "standard",
"filter": [
"sorani_normalization",
"lowercase",
"decimal_digit",
"sorani_stop",
"sorani_keywords",
"sorani_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'sorani_example',
body: {
settings: {
analysis: {
filter: {
sorani_stop: {
type: 'stop',
stopwords: '_sorani_'
},
sorani_keywords: {
type: 'keyword_marker',
keywords: [
'mînak'
]
},
sorani_stemmer: {
type: 'stemmer',
language: 'sorani'
}
},
analyzer: {
rebuilt_sorani: {
tokenizer: 'standard',
filter: [
'sorani_normalization',
'lowercase',
'decimal_digit',
'sorani_stop',
'sorani_keywords',
'sorani_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "sorani_example",
settings: {
analysis: {
filter: {
sorani_stop: {
type: "stop",
stopwords: "_sorani_",
},
sorani_keywords: {
type: "keyword_marker",
keywords: ["mînak"],
},
sorani_stemmer: {
type: "stemmer",
language: "sorani",
},
},
analyzer: {
rebuilt_sorani: {
tokenizer: "standard",
filter: [
"sorani_normalization",
"lowercase",
"decimal_digit",
"sorani_stop",
"sorani_keywords",
"sorani_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /sorani_example
{
"settings": {
"analysis": {
"filter": {
"sorani_stop": {
"type": "stop",
"stopwords": "_sorani_"
},
"sorani_keywords": {
"type": "keyword_marker",
"keywords": ["mînak"]
},
"sorani_stemmer": {
"type": "stemmer",
"language": "sorani"
}
},
"analyzer": {
"rebuilt_sorani": {
"tokenizer": "standard",
"filter": [
"sorani_normalization",
"lowercase",
"decimal_digit",
"sorani_stop",
"sorani_keywords",
"sorani_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
spanish
analyzer
The spanish
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="spanish_example",
settings={
"analysis": {
"filter": {
"spanish_stop": {
"type": "stop",
"stopwords": "_spanish_"
},
"spanish_keywords": {
"type": "keyword_marker",
"keywords": [
"ejemplo"
]
},
"spanish_stemmer": {
"type": "stemmer",
"language": "light_spanish"
}
},
"analyzer": {
"rebuilt_spanish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"spanish_stop",
"spanish_keywords",
"spanish_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'spanish_example',
body: {
settings: {
analysis: {
filter: {
spanish_stop: {
type: 'stop',
stopwords: '_spanish_'
},
spanish_keywords: {
type: 'keyword_marker',
keywords: [
'ejemplo'
]
},
spanish_stemmer: {
type: 'stemmer',
language: 'light_spanish'
}
},
analyzer: {
rebuilt_spanish: {
tokenizer: 'standard',
filter: [
'lowercase',
'spanish_stop',
'spanish_keywords',
'spanish_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "spanish_example",
settings: {
analysis: {
filter: {
spanish_stop: {
type: "stop",
stopwords: "_spanish_",
},
spanish_keywords: {
type: "keyword_marker",
keywords: ["ejemplo"],
},
spanish_stemmer: {
type: "stemmer",
language: "light_spanish",
},
},
analyzer: {
rebuilt_spanish: {
tokenizer: "standard",
filter: [
"lowercase",
"spanish_stop",
"spanish_keywords",
"spanish_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /spanish_example
{
"settings": {
"analysis": {
"filter": {
"spanish_stop": {
"type": "stop",
"stopwords": "_spanish_"
},
"spanish_keywords": {
"type": "keyword_marker",
"keywords": ["ejemplo"]
},
"spanish_stemmer": {
"type": "stemmer",
"language": "light_spanish"
}
},
"analyzer": {
"rebuilt_spanish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"spanish_stop",
"spanish_keywords",
"spanish_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
swedish
analyzer
The swedish
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="swedish_example",
settings={
"analysis": {
"filter": {
"swedish_stop": {
"type": "stop",
"stopwords": "_swedish_"
},
"swedish_keywords": {
"type": "keyword_marker",
"keywords": [
"exempel"
]
},
"swedish_stemmer": {
"type": "stemmer",
"language": "swedish"
}
},
"analyzer": {
"rebuilt_swedish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"swedish_stop",
"swedish_keywords",
"swedish_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'swedish_example',
body: {
settings: {
analysis: {
filter: {
swedish_stop: {
type: 'stop',
stopwords: '_swedish_'
},
swedish_keywords: {
type: 'keyword_marker',
keywords: [
'exempel'
]
},
swedish_stemmer: {
type: 'stemmer',
language: 'swedish'
}
},
analyzer: {
rebuilt_swedish: {
tokenizer: 'standard',
filter: [
'lowercase',
'swedish_stop',
'swedish_keywords',
'swedish_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "swedish_example",
settings: {
analysis: {
filter: {
swedish_stop: {
type: "stop",
stopwords: "_swedish_",
},
swedish_keywords: {
type: "keyword_marker",
keywords: ["exempel"],
},
swedish_stemmer: {
type: "stemmer",
language: "swedish",
},
},
analyzer: {
rebuilt_swedish: {
tokenizer: "standard",
filter: [
"lowercase",
"swedish_stop",
"swedish_keywords",
"swedish_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /swedish_example
{
"settings": {
"analysis": {
"filter": {
"swedish_stop": {
"type": "stop",
"stopwords": "_swedish_"
},
"swedish_keywords": {
"type": "keyword_marker",
"keywords": ["exempel"]
},
"swedish_stemmer": {
"type": "stemmer",
"language": "swedish"
}
},
"analyzer": {
"rebuilt_swedish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"swedish_stop",
"swedish_keywords",
"swedish_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
turkish
analyzer
The turkish
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="turkish_example",
settings={
"analysis": {
"filter": {
"turkish_stop": {
"type": "stop",
"stopwords": "_turkish_"
},
"turkish_lowercase": {
"type": "lowercase",
"language": "turkish"
},
"turkish_keywords": {
"type": "keyword_marker",
"keywords": [
"örnek"
]
},
"turkish_stemmer": {
"type": "stemmer",
"language": "turkish"
}
},
"analyzer": {
"rebuilt_turkish": {
"tokenizer": "standard",
"filter": [
"apostrophe",
"turkish_lowercase",
"turkish_stop",
"turkish_keywords",
"turkish_stemmer"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'turkish_example',
body: {
settings: {
analysis: {
filter: {
turkish_stop: {
type: 'stop',
stopwords: '_turkish_'
},
turkish_lowercase: {
type: 'lowercase',
language: 'turkish'
},
turkish_keywords: {
type: 'keyword_marker',
keywords: [
'örnek'
]
},
turkish_stemmer: {
type: 'stemmer',
language: 'turkish'
}
},
analyzer: {
rebuilt_turkish: {
tokenizer: 'standard',
filter: [
'apostrophe',
'turkish_lowercase',
'turkish_stop',
'turkish_keywords',
'turkish_stemmer'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "turkish_example",
settings: {
analysis: {
filter: {
turkish_stop: {
type: "stop",
stopwords: "_turkish_",
},
turkish_lowercase: {
type: "lowercase",
language: "turkish",
},
turkish_keywords: {
type: "keyword_marker",
keywords: ["örnek"],
},
turkish_stemmer: {
type: "stemmer",
language: "turkish",
},
},
analyzer: {
rebuilt_turkish: {
tokenizer: "standard",
filter: [
"apostrophe",
"turkish_lowercase",
"turkish_stop",
"turkish_keywords",
"turkish_stemmer",
],
},
},
},
},
});
console.log(response);
PUT /turkish_example
{
"settings": {
"analysis": {
"filter": {
"turkish_stop": {
"type": "stop",
"stopwords": "_turkish_"
},
"turkish_lowercase": {
"type": "lowercase",
"language": "turkish"
},
"turkish_keywords": {
"type": "keyword_marker",
"keywords": ["örnek"]
},
"turkish_stemmer": {
"type": "stemmer",
"language": "turkish"
}
},
"analyzer": {
"rebuilt_turkish": {
"tokenizer": "standard",
"filter": [
"apostrophe",
"turkish_lowercase",
"turkish_stop",
"turkish_keywords",
"turkish_stemmer"
]
}
}
}
}
}
The default stopwords can be overridden with the | |
This filter should be removed unless there are words which should be excluded from stemming. |
thai
analyzer
The thai
analyzer could be reimplemented as a custom
analyzer as follows:
resp = client.indices.create(
index="thai_example",
settings={
"analysis": {
"filter": {
"thai_stop": {
"type": "stop",
"stopwords": "_thai_"
}
},
"analyzer": {
"rebuilt_thai": {
"tokenizer": "thai",
"filter": [
"lowercase",
"decimal_digit",
"thai_stop"
]
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'thai_example',
body: {
settings: {
analysis: {
filter: {
thai_stop: {
type: 'stop',
stopwords: '_thai_'
}
},
analyzer: {
rebuilt_thai: {
tokenizer: 'thai',
filter: [
'lowercase',
'decimal_digit',
'thai_stop'
]
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "thai_example",
settings: {
analysis: {
filter: {
thai_stop: {
type: "stop",
stopwords: "_thai_",
},
},
analyzer: {
rebuilt_thai: {
tokenizer: "thai",
filter: ["lowercase", "decimal_digit", "thai_stop"],
},
},
},
},
});
console.log(response);
PUT /thai_example
{
"settings": {
"analysis": {
"filter": {
"thai_stop": {
"type": "stop",
"stopwords": "_thai_"
}
},
"analyzer": {
"rebuilt_thai": {
"tokenizer": "thai",
"filter": [
"lowercase",
"decimal_digit",
"thai_stop"
]
}
}
}
}
}
The default stopwords can be overridden with the |