Create a custom analyzer
Create a custom analyzer
When the built-in analyzers do not fulfill your needs, you can create a custom
analyzer which uses the appropriate combination of:
- zero or more character filters
- a tokenizer
- zero or more token filters.
Configuration
The custom
analyzer accepts the following parameters:
| Analyzer type. Accepts built-in analyzer types. For custom analyzers, use |
| A built-in or customised tokenizer. (Required) |
| An optional array of built-in or customised character filters. |
| An optional array of built-in or customised token filters. |
| When indexing an array of text values, Elasticsearch inserts a fake “gap” between the last term of one value and the first term of the next value to ensure that a phrase query doesn’t match two terms from different array elements. Defaults to |
Example configuration
Here is an example that combines the following:
Character Filter
Tokenizer
Token Filters
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"type": "custom",
"tokenizer": "standard",
"char_filter": [
"html_strip"
],
"filter": [
"lowercase",
"asciifolding"
]
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_custom_analyzer",
text="Is this déjà vu</b>?",
)
print(resp1)
response = client.indices.create(
index: 'my-index-000001',
body: {
settings: {
analysis: {
analyzer: {
my_custom_analyzer: {
type: 'custom',
tokenizer: 'standard',
char_filter: [
'html_strip'
],
filter: [
'lowercase',
'asciifolding'
]
}
}
}
}
}
)
puts response
response = client.indices.analyze(
index: 'my-index-000001',
body: {
analyzer: 'my_custom_analyzer',
text: 'Is this déjà vu</b>?'
}
)
puts response
const response = await client.indices.create({
index: "my-index-000001",
settings: {
analysis: {
analyzer: {
my_custom_analyzer: {
type: "custom",
tokenizer: "standard",
char_filter: ["html_strip"],
filter: ["lowercase", "asciifolding"],
},
},
},
},
});
console.log(response);
const response1 = await client.indices.analyze({
index: "my-index-000001",
analyzer: "my_custom_analyzer",
text: "Is this déjà vu</b>?",
});
console.log(response1);
PUT my-index-000001
{
"settings": {
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"type": "custom",
"tokenizer": "standard",
"char_filter": [
"html_strip"
],
"filter": [
"lowercase",
"asciifolding"
]
}
}
}
}
}
POST my-index-000001/_analyze
{
"analyzer": "my_custom_analyzer",
"text": "Is this <b>déjà vu</b>?"
}
For |
The above example produces the following terms:
[ is, this, deja, vu ]
The previous example used tokenizer, token filters, and character filters with their default configurations, but it is possible to create configured versions of each and to use them in a custom analyzer.
Here is a more complicated example that combines the following:
Character Filter
- Mapping Character Filter, configured to replace
:)
with_happy_
and:(
with_sad_
Tokenizer
- Pattern Tokenizer, configured to split on punctuation characters
Token Filters
- Lowercase Token Filter
- Stop Token Filter, configured to use the pre-defined list of English stop words
Here is an example:
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"char_filter": [
"emoticons"
],
"tokenizer": "punctuation",
"filter": [
"lowercase",
"english_stop"
]
}
},
"tokenizer": {
"punctuation": {
"type": "pattern",
"pattern": "[ .,!?]"
}
},
"char_filter": {
"emoticons": {
"type": "mapping",
"mappings": [
":) => _happy_",
":( => _sad_"
]
}
},
"filter": {
"english_stop": {
"type": "stop",
"stopwords": "_english_"
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_custom_analyzer",
text="I'm a :) person, and you?",
)
print(resp1)
response = client.indices.create(
index: 'my-index-000001',
body: {
settings: {
analysis: {
analyzer: {
my_custom_analyzer: {
char_filter: [
'emoticons'
],
tokenizer: 'punctuation',
filter: [
'lowercase',
'english_stop'
]
}
},
tokenizer: {
punctuation: {
type: 'pattern',
pattern: '[ .,!?]'
}
},
char_filter: {
emoticons: {
type: 'mapping',
mappings: [
':) => _happy_',
':( => _sad_'
]
}
},
filter: {
english_stop: {
type: 'stop',
stopwords: '_english_'
}
}
}
}
}
)
puts response
response = client.indices.analyze(
index: 'my-index-000001',
body: {
analyzer: 'my_custom_analyzer',
text: "I'm a :) person, and you?"
}
)
puts response
const response = await client.indices.create({
index: "my-index-000001",
settings: {
analysis: {
analyzer: {
my_custom_analyzer: {
char_filter: ["emoticons"],
tokenizer: "punctuation",
filter: ["lowercase", "english_stop"],
},
},
tokenizer: {
punctuation: {
type: "pattern",
pattern: "[ .,!?]",
},
},
char_filter: {
emoticons: {
type: "mapping",
mappings: [":) => _happy_", ":( => _sad_"],
},
},
filter: {
english_stop: {
type: "stop",
stopwords: "_english_",
},
},
},
},
});
console.log(response);
const response1 = await client.indices.analyze({
index: "my-index-000001",
analyzer: "my_custom_analyzer",
text: "I'm a :) person, and you?",
});
console.log(response1);
PUT my-index-000001
{
"settings": {
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"char_filter": [
"emoticons"
],
"tokenizer": "punctuation",
"filter": [
"lowercase",
"english_stop"
]
}
},
"tokenizer": {
"punctuation": {
"type": "pattern",
"pattern": "[ .,!?]"
}
},
"char_filter": {
"emoticons": {
"type": "mapping",
"mappings": [
":) => _happy_",
":( => _sad_"
]
}
},
"filter": {
"english_stop": {
"type": "stop",
"stopwords": "_english_"
}
}
}
}
}
POST my-index-000001/_analyze
{
"analyzer": "my_custom_analyzer",
"text": "I'm a :) person, and you?"
}
Assigns the index a default custom analyzer, | |
Defines the custom | |
Defines the custom | |
Defines the custom |
The above example produces the following terms:
[ i'm, _happy_, person, you ]