Run downsampling manually
Run downsampling manually
The recommended way to downsample a time-series data stream (TSDS) is through index lifecycle management (ILM). However, if you’re not using ILM, you can downsample a TSDS manually. This guide shows you how, using typical Kubernetes cluster monitoring data.
To test out manual downsampling, follow these steps:
- Check the prerequisites.
- Create a time series data stream.
- Ingest time series data.
- Downsample the TSDS.
- View the results.
Prerequisites
- Refer to the TSDS prerequisites.
- It is not possible to downsample a data stream directly, nor multiple indices at once. It’s only possible to downsample one time series index (TSDS backing index).
- In order to downsample an index, it needs to be read-only. For a TSDS write index, this means it needs to be rolled over and made read-only first.
- Downsampling uses UTC timestamps.
- Downsampling needs at least one metric field to exist in the time series index.
Create a time series data stream
First, you’ll create a TSDS. For simplicity, in the time series mapping all time_series_metric
parameters are set to type gauge
, but other values such as counter
and histogram
may also be used. The time_series_metric
values determine the kind of statistical representations that are used during downsampling.
The index template includes a set of static time series dimensions: host
, namespace
, node
, and pod
. The time series dimensions are not changed by the downsampling process.
resp = client.indices.put_index_template(
name="my-data-stream-template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
template={
"settings": {
"index": {
"mode": "time_series",
"routing_path": [
"kubernetes.namespace",
"kubernetes.host",
"kubernetes.node",
"kubernetes.pod"
],
"number_of_replicas": 0,
"number_of_shards": 2
}
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
},
"kubernetes": {
"properties": {
"container": {
"properties": {
"cpu": {
"properties": {
"usage": {
"properties": {
"core": {
"properties": {
"ns": {
"type": "long"
}
}
},
"limit": {
"properties": {
"pct": {
"type": "float"
}
}
},
"nanocores": {
"type": "long",
"time_series_metric": "gauge"
},
"node": {
"properties": {
"pct": {
"type": "float"
}
}
}
}
}
}
},
"memory": {
"properties": {
"available": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
},
"majorpagefaults": {
"type": "long"
},
"pagefaults": {
"type": "long",
"time_series_metric": "gauge"
},
"rss": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
},
"usage": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
},
"limit": {
"properties": {
"pct": {
"type": "float"
}
}
},
"node": {
"properties": {
"pct": {
"type": "float"
}
}
}
}
},
"workingset": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
}
}
},
"name": {
"type": "keyword"
},
"start_time": {
"type": "date"
}
}
},
"host": {
"type": "keyword",
"time_series_dimension": True
},
"namespace": {
"type": "keyword",
"time_series_dimension": True
},
"node": {
"type": "keyword",
"time_series_dimension": True
},
"pod": {
"type": "keyword",
"time_series_dimension": True
}
}
}
}
}
},
)
print(resp)
response = client.indices.put_index_template(
name: 'my-data-stream-template',
body: {
index_patterns: [
'my-data-stream*'
],
data_stream: {},
template: {
settings: {
index: {
mode: 'time_series',
routing_path: [
'kubernetes.namespace',
'kubernetes.host',
'kubernetes.node',
'kubernetes.pod'
],
number_of_replicas: 0,
number_of_shards: 2
}
},
mappings: {
properties: {
"@timestamp": {
type: 'date'
},
kubernetes: {
properties: {
container: {
properties: {
cpu: {
properties: {
usage: {
properties: {
core: {
properties: {
ns: {
type: 'long'
}
}
},
limit: {
properties: {
pct: {
type: 'float'
}
}
},
nanocores: {
type: 'long',
time_series_metric: 'gauge'
},
node: {
properties: {
pct: {
type: 'float'
}
}
}
}
}
}
},
memory: {
properties: {
available: {
properties: {
bytes: {
type: 'long',
time_series_metric: 'gauge'
}
}
},
majorpagefaults: {
type: 'long'
},
pagefaults: {
type: 'long',
time_series_metric: 'gauge'
},
rss: {
properties: {
bytes: {
type: 'long',
time_series_metric: 'gauge'
}
}
},
usage: {
properties: {
bytes: {
type: 'long',
time_series_metric: 'gauge'
},
limit: {
properties: {
pct: {
type: 'float'
}
}
},
node: {
properties: {
pct: {
type: 'float'
}
}
}
}
},
workingset: {
properties: {
bytes: {
type: 'long',
time_series_metric: 'gauge'
}
}
}
}
},
name: {
type: 'keyword'
},
start_time: {
type: 'date'
}
}
},
host: {
type: 'keyword',
time_series_dimension: true
},
namespace: {
type: 'keyword',
time_series_dimension: true
},
node: {
type: 'keyword',
time_series_dimension: true
},
pod: {
type: 'keyword',
time_series_dimension: true
}
}
}
}
}
}
}
)
puts response
const response = await client.indices.putIndexTemplate({
name: "my-data-stream-template",
index_patterns: ["my-data-stream*"],
data_stream: {},
template: {
settings: {
index: {
mode: "time_series",
routing_path: [
"kubernetes.namespace",
"kubernetes.host",
"kubernetes.node",
"kubernetes.pod",
],
number_of_replicas: 0,
number_of_shards: 2,
},
},
mappings: {
properties: {
"@timestamp": {
type: "date",
},
kubernetes: {
properties: {
container: {
properties: {
cpu: {
properties: {
usage: {
properties: {
core: {
properties: {
ns: {
type: "long",
},
},
},
limit: {
properties: {
pct: {
type: "float",
},
},
},
nanocores: {
type: "long",
time_series_metric: "gauge",
},
node: {
properties: {
pct: {
type: "float",
},
},
},
},
},
},
},
memory: {
properties: {
available: {
properties: {
bytes: {
type: "long",
time_series_metric: "gauge",
},
},
},
majorpagefaults: {
type: "long",
},
pagefaults: {
type: "long",
time_series_metric: "gauge",
},
rss: {
properties: {
bytes: {
type: "long",
time_series_metric: "gauge",
},
},
},
usage: {
properties: {
bytes: {
type: "long",
time_series_metric: "gauge",
},
limit: {
properties: {
pct: {
type: "float",
},
},
},
node: {
properties: {
pct: {
type: "float",
},
},
},
},
},
workingset: {
properties: {
bytes: {
type: "long",
time_series_metric: "gauge",
},
},
},
},
},
name: {
type: "keyword",
},
start_time: {
type: "date",
},
},
},
host: {
type: "keyword",
time_series_dimension: true,
},
namespace: {
type: "keyword",
time_series_dimension: true,
},
node: {
type: "keyword",
time_series_dimension: true,
},
pod: {
type: "keyword",
time_series_dimension: true,
},
},
},
},
},
},
});
console.log(response);
PUT _index_template/my-data-stream-template
{
"index_patterns": [
"my-data-stream*"
],
"data_stream": {},
"template": {
"settings": {
"index": {
"mode": "time_series",
"routing_path": [
"kubernetes.namespace",
"kubernetes.host",
"kubernetes.node",
"kubernetes.pod"
],
"number_of_replicas": 0,
"number_of_shards": 2
}
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
},
"kubernetes": {
"properties": {
"container": {
"properties": {
"cpu": {
"properties": {
"usage": {
"properties": {
"core": {
"properties": {
"ns": {
"type": "long"
}
}
},
"limit": {
"properties": {
"pct": {
"type": "float"
}
}
},
"nanocores": {
"type": "long",
"time_series_metric": "gauge"
},
"node": {
"properties": {
"pct": {
"type": "float"
}
}
}
}
}
}
},
"memory": {
"properties": {
"available": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
},
"majorpagefaults": {
"type": "long"
},
"pagefaults": {
"type": "long",
"time_series_metric": "gauge"
},
"rss": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
},
"usage": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
},
"limit": {
"properties": {
"pct": {
"type": "float"
}
}
},
"node": {
"properties": {
"pct": {
"type": "float"
}
}
}
}
},
"workingset": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
}
}
},
"name": {
"type": "keyword"
},
"start_time": {
"type": "date"
}
}
},
"host": {
"type": "keyword",
"time_series_dimension": true
},
"namespace": {
"type": "keyword",
"time_series_dimension": true
},
"node": {
"type": "keyword",
"time_series_dimension": true
},
"pod": {
"type": "keyword",
"time_series_dimension": true
}
}
}
}
}
}
}
Ingest time series data
Because time series data streams have been designed to only accept recent data, in this example, you’ll use an ingest pipeline to time-shift the data as it gets indexed. As a result, the indexed data will have an @timestamp
from the last 15 minutes.
Create the pipeline with this request:
resp = client.ingest.put_pipeline(
id="my-timestamp-pipeline",
description="Shifts the @timestamp to the last 15 minutes",
processors=[
{
"set": {
"field": "ingest_time",
"value": "{{_ingest.timestamp}}"
}
},
{
"script": {
"lang": "painless",
"source": "\n def delta = ChronoUnit.SECONDS.between(\n ZonedDateTime.parse(\"2022-06-21T15:49:00Z\"),\n ZonedDateTime.parse(ctx[\"ingest_time\"])\n );\n ctx[\"@timestamp\"] = ZonedDateTime.parse(ctx[\"@timestamp\"]).plus(delta,ChronoUnit.SECONDS).toString();\n "
}
}
],
)
print(resp)
response = client.ingest.put_pipeline(
id: 'my-timestamp-pipeline',
body: {
description: 'Shifts the @timestamp to the last 15 minutes',
processors: [
{
set: {
field: 'ingest_time',
value: '{{_ingest.timestamp}}'
}
},
{
script: {
lang: 'painless',
source: "\n def delta = ChronoUnit.SECONDS.between(\n ZonedDateTime.parse(\"2022-06-21T15:49:00Z\"),\n ZonedDateTime.parse(ctx[\"ingest_time\"])\n );\n ctx[\"@timestamp\"] = ZonedDateTime.parse(ctx[\"@timestamp\"]).plus(delta,ChronoUnit.SECONDS).toString();\n "
}
}
]
}
)
puts response
const response = await client.ingest.putPipeline({
id: "my-timestamp-pipeline",
description: "Shifts the @timestamp to the last 15 minutes",
processors: [
{
set: {
field: "ingest_time",
value: "{{_ingest.timestamp}}",
},
},
{
script: {
lang: "painless",
source:
'\n def delta = ChronoUnit.SECONDS.between(\n ZonedDateTime.parse("2022-06-21T15:49:00Z"),\n ZonedDateTime.parse(ctx["ingest_time"])\n );\n ctx["@timestamp"] = ZonedDateTime.parse(ctx["@timestamp"]).plus(delta,ChronoUnit.SECONDS).toString();\n ',
},
},
],
});
console.log(response);
PUT _ingest/pipeline/my-timestamp-pipeline
{
"description": "Shifts the @timestamp to the last 15 minutes",
"processors": [
{
"set": {
"field": "ingest_time",
"value": "{{_ingest.timestamp}}"
}
},
{
"script": {
"lang": "painless",
"source": """
def delta = ChronoUnit.SECONDS.between(
ZonedDateTime.parse("2022-06-21T15:49:00Z"),
ZonedDateTime.parse(ctx["ingest_time"])
);
ctx["@timestamp"] = ZonedDateTime.parse(ctx["@timestamp"]).plus(delta,ChronoUnit.SECONDS).toString();
"""
}
}
]
}
Next, use a bulk API request to automatically create your TSDS and index a set of ten documents:
resp = client.bulk(
index="my-data-stream",
refresh=True,
pipeline="my-timestamp-pipeline",
operations=[
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:49:00Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 91153,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 463314616
},
"usage": {
"bytes": 307007078,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 585236
},
"rss": {
"bytes": 102728
},
"pagefaults": 120901,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:45:50Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 124501,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 982546514
},
"usage": {
"bytes": 360035574,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1339884
},
"rss": {
"bytes": 381174
},
"pagefaults": 178473,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:44:50Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 38907,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 862723768
},
"usage": {
"bytes": 379572388,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 431227
},
"rss": {
"bytes": 386580
},
"pagefaults": 233166,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:44:40Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 86706,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 567160996
},
"usage": {
"bytes": 103266017,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1724908
},
"rss": {
"bytes": 105431
},
"pagefaults": 233166,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:44:00Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 150069,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 639054643
},
"usage": {
"bytes": 265142477,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1786511
},
"rss": {
"bytes": 189235
},
"pagefaults": 138172,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:42:40Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 82260,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 854735585
},
"usage": {
"bytes": 309798052,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 924058
},
"rss": {
"bytes": 110838
},
"pagefaults": 259073,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:42:10Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 153404,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 279586406
},
"usage": {
"bytes": 214904955,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1047265
},
"rss": {
"bytes": 91914
},
"pagefaults": 302252,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:40:20Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 125613,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 822782853
},
"usage": {
"bytes": 100475044,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 2109932
},
"rss": {
"bytes": 278446
},
"pagefaults": 74843,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:40:10Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 100046,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 567160996
},
"usage": {
"bytes": 362826547,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1986724
},
"rss": {
"bytes": 402801
},
"pagefaults": 296495,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:38:30Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 40018,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 1062428344
},
"usage": {
"bytes": 265142477,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 2294743
},
"rss": {
"bytes": 340623
},
"pagefaults": 224530,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
}
],
)
print(resp)
response = client.bulk(
index: 'my-data-stream',
refresh: true,
pipeline: 'my-timestamp-pipeline',
body: [
{
create: {}
},
{
"@timestamp": '2022-06-21T15:49:00Z',
kubernetes: {
host: 'gke-apps-0',
node: 'gke-apps-0-0',
pod: 'gke-apps-0-0-0',
container: {
cpu: {
usage: {
nanocores: 91_153,
core: {
ns: 12_828_317_850
},
node: {
pct: 2.77905e-05
},
limit: {
pct: 2.77905e-05
}
}
},
memory: {
available: {
bytes: 463_314_616
},
usage: {
bytes: 307_007_078,
node: {
pct: 0.01770037710617187
},
limit: {
pct: 9.923134671484496e-05
}
},
workingset: {
bytes: 585_236
},
rss: {
bytes: 102_728
},
pagefaults: 120_901,
majorpagefaults: 0
},
start_time: '2021-03-30T07:59:06Z',
name: 'container-name-44'
},
namespace: 'namespace26'
}
},
{
create: {}
},
{
"@timestamp": '2022-06-21T15:45:50Z',
kubernetes: {
host: 'gke-apps-0',
node: 'gke-apps-0-0',
pod: 'gke-apps-0-0-0',
container: {
cpu: {
usage: {
nanocores: 124_501,
core: {
ns: 12_828_317_850
},
node: {
pct: 2.77905e-05
},
limit: {
pct: 2.77905e-05
}
}
},
memory: {
available: {
bytes: 982_546_514
},
usage: {
bytes: 360_035_574,
node: {
pct: 0.01770037710617187
},
limit: {
pct: 9.923134671484496e-05
}
},
workingset: {
bytes: 1_339_884
},
rss: {
bytes: 381_174
},
pagefaults: 178_473,
majorpagefaults: 0
},
start_time: '2021-03-30T07:59:06Z',
name: 'container-name-44'
},
namespace: 'namespace26'
}
},
{
create: {}
},
{
"@timestamp": '2022-06-21T15:44:50Z',
kubernetes: {
host: 'gke-apps-0',
node: 'gke-apps-0-0',
pod: 'gke-apps-0-0-0',
container: {
cpu: {
usage: {
nanocores: 38_907,
core: {
ns: 12_828_317_850
},
node: {
pct: 2.77905e-05
},
limit: {
pct: 2.77905e-05
}
}
},
memory: {
available: {
bytes: 862_723_768
},
usage: {
bytes: 379_572_388,
node: {
pct: 0.01770037710617187
},
limit: {
pct: 9.923134671484496e-05
}
},
workingset: {
bytes: 431_227
},
rss: {
bytes: 386_580
},
pagefaults: 233_166,
majorpagefaults: 0
},
start_time: '2021-03-30T07:59:06Z',
name: 'container-name-44'
},
namespace: 'namespace26'
}
},
{
create: {}
},
{
"@timestamp": '2022-06-21T15:44:40Z',
kubernetes: {
host: 'gke-apps-0',
node: 'gke-apps-0-0',
pod: 'gke-apps-0-0-0',
container: {
cpu: {
usage: {
nanocores: 86_706,
core: {
ns: 12_828_317_850
},
node: {
pct: 2.77905e-05
},
limit: {
pct: 2.77905e-05
}
}
},
memory: {
available: {
bytes: 567_160_996
},
usage: {
bytes: 103_266_017,
node: {
pct: 0.01770037710617187
},
limit: {
pct: 9.923134671484496e-05
}
},
workingset: {
bytes: 1_724_908
},
rss: {
bytes: 105_431
},
pagefaults: 233_166,
majorpagefaults: 0
},
start_time: '2021-03-30T07:59:06Z',
name: 'container-name-44'
},
namespace: 'namespace26'
}
},
{
create: {}
},
{
"@timestamp": '2022-06-21T15:44:00Z',
kubernetes: {
host: 'gke-apps-0',
node: 'gke-apps-0-0',
pod: 'gke-apps-0-0-0',
container: {
cpu: {
usage: {
nanocores: 150_069,
core: {
ns: 12_828_317_850
},
node: {
pct: 2.77905e-05
},
limit: {
pct: 2.77905e-05
}
}
},
memory: {
available: {
bytes: 639_054_643
},
usage: {
bytes: 265_142_477,
node: {
pct: 0.01770037710617187
},
limit: {
pct: 9.923134671484496e-05
}
},
workingset: {
bytes: 1_786_511
},
rss: {
bytes: 189_235
},
pagefaults: 138_172,
majorpagefaults: 0
},
start_time: '2021-03-30T07:59:06Z',
name: 'container-name-44'
},
namespace: 'namespace26'
}
},
{
create: {}
},
{
"@timestamp": '2022-06-21T15:42:40Z',
kubernetes: {
host: 'gke-apps-0',
node: 'gke-apps-0-0',
pod: 'gke-apps-0-0-0',
container: {
cpu: {
usage: {
nanocores: 82_260,
core: {
ns: 12_828_317_850
},
node: {
pct: 2.77905e-05
},
limit: {
pct: 2.77905e-05
}
}
},
memory: {
available: {
bytes: 854_735_585
},
usage: {
bytes: 309_798_052,
node: {
pct: 0.01770037710617187
},
limit: {
pct: 9.923134671484496e-05
}
},
workingset: {
bytes: 924_058
},
rss: {
bytes: 110_838
},
pagefaults: 259_073,
majorpagefaults: 0
},
start_time: '2021-03-30T07:59:06Z',
name: 'container-name-44'
},
namespace: 'namespace26'
}
},
{
create: {}
},
{
"@timestamp": '2022-06-21T15:42:10Z',
kubernetes: {
host: 'gke-apps-0',
node: 'gke-apps-0-0',
pod: 'gke-apps-0-0-0',
container: {
cpu: {
usage: {
nanocores: 153_404,
core: {
ns: 12_828_317_850
},
node: {
pct: 2.77905e-05
},
limit: {
pct: 2.77905e-05
}
}
},
memory: {
available: {
bytes: 279_586_406
},
usage: {
bytes: 214_904_955,
node: {
pct: 0.01770037710617187
},
limit: {
pct: 9.923134671484496e-05
}
},
workingset: {
bytes: 1_047_265
},
rss: {
bytes: 91_914
},
pagefaults: 302_252,
majorpagefaults: 0
},
start_time: '2021-03-30T07:59:06Z',
name: 'container-name-44'
},
namespace: 'namespace26'
}
},
{
create: {}
},
{
"@timestamp": '2022-06-21T15:40:20Z',
kubernetes: {
host: 'gke-apps-0',
node: 'gke-apps-0-0',
pod: 'gke-apps-0-0-0',
container: {
cpu: {
usage: {
nanocores: 125_613,
core: {
ns: 12_828_317_850
},
node: {
pct: 2.77905e-05
},
limit: {
pct: 2.77905e-05
}
}
},
memory: {
available: {
bytes: 822_782_853
},
usage: {
bytes: 100_475_044,
node: {
pct: 0.01770037710617187
},
limit: {
pct: 9.923134671484496e-05
}
},
workingset: {
bytes: 2_109_932
},
rss: {
bytes: 278_446
},
pagefaults: 74_843,
majorpagefaults: 0
},
start_time: '2021-03-30T07:59:06Z',
name: 'container-name-44'
},
namespace: 'namespace26'
}
},
{
create: {}
},
{
"@timestamp": '2022-06-21T15:40:10Z',
kubernetes: {
host: 'gke-apps-0',
node: 'gke-apps-0-0',
pod: 'gke-apps-0-0-0',
container: {
cpu: {
usage: {
nanocores: 100_046,
core: {
ns: 12_828_317_850
},
node: {
pct: 2.77905e-05
},
limit: {
pct: 2.77905e-05
}
}
},
memory: {
available: {
bytes: 567_160_996
},
usage: {
bytes: 362_826_547,
node: {
pct: 0.01770037710617187
},
limit: {
pct: 9.923134671484496e-05
}
},
workingset: {
bytes: 1_986_724
},
rss: {
bytes: 402_801
},
pagefaults: 296_495,
majorpagefaults: 0
},
start_time: '2021-03-30T07:59:06Z',
name: 'container-name-44'
},
namespace: 'namespace26'
}
},
{
create: {}
},
{
"@timestamp": '2022-06-21T15:38:30Z',
kubernetes: {
host: 'gke-apps-0',
node: 'gke-apps-0-0',
pod: 'gke-apps-0-0-0',
container: {
cpu: {
usage: {
nanocores: 40_018,
core: {
ns: 12_828_317_850
},
node: {
pct: 2.77905e-05
},
limit: {
pct: 2.77905e-05
}
}
},
memory: {
available: {
bytes: 1_062_428_344
},
usage: {
bytes: 265_142_477,
node: {
pct: 0.01770037710617187
},
limit: {
pct: 9.923134671484496e-05
}
},
workingset: {
bytes: 2_294_743
},
rss: {
bytes: 340_623
},
pagefaults: 224_530,
majorpagefaults: 0
},
start_time: '2021-03-30T07:59:06Z',
name: 'container-name-44'
},
namespace: 'namespace26'
}
}
]
)
puts response
const response = await client.bulk({
index: "my-data-stream",
refresh: "true",
pipeline: "my-timestamp-pipeline",
operations: [
{
create: {},
},
{
"@timestamp": "2022-06-21T15:49:00Z",
kubernetes: {
host: "gke-apps-0",
node: "gke-apps-0-0",
pod: "gke-apps-0-0-0",
container: {
cpu: {
usage: {
nanocores: 91153,
core: {
ns: 12828317850,
},
node: {
pct: 0.0000277905,
},
limit: {
pct: 0.0000277905,
},
},
},
memory: {
available: {
bytes: 463314616,
},
usage: {
bytes: 307007078,
node: {
pct: 0.01770037710617187,
},
limit: {
pct: 0.00009923134671484496,
},
},
workingset: {
bytes: 585236,
},
rss: {
bytes: 102728,
},
pagefaults: 120901,
majorpagefaults: 0,
},
start_time: "2021-03-30T07:59:06Z",
name: "container-name-44",
},
namespace: "namespace26",
},
},
{
create: {},
},
{
"@timestamp": "2022-06-21T15:45:50Z",
kubernetes: {
host: "gke-apps-0",
node: "gke-apps-0-0",
pod: "gke-apps-0-0-0",
container: {
cpu: {
usage: {
nanocores: 124501,
core: {
ns: 12828317850,
},
node: {
pct: 0.0000277905,
},
limit: {
pct: 0.0000277905,
},
},
},
memory: {
available: {
bytes: 982546514,
},
usage: {
bytes: 360035574,
node: {
pct: 0.01770037710617187,
},
limit: {
pct: 0.00009923134671484496,
},
},
workingset: {
bytes: 1339884,
},
rss: {
bytes: 381174,
},
pagefaults: 178473,
majorpagefaults: 0,
},
start_time: "2021-03-30T07:59:06Z",
name: "container-name-44",
},
namespace: "namespace26",
},
},
{
create: {},
},
{
"@timestamp": "2022-06-21T15:44:50Z",
kubernetes: {
host: "gke-apps-0",
node: "gke-apps-0-0",
pod: "gke-apps-0-0-0",
container: {
cpu: {
usage: {
nanocores: 38907,
core: {
ns: 12828317850,
},
node: {
pct: 0.0000277905,
},
limit: {
pct: 0.0000277905,
},
},
},
memory: {
available: {
bytes: 862723768,
},
usage: {
bytes: 379572388,
node: {
pct: 0.01770037710617187,
},
limit: {
pct: 0.00009923134671484496,
},
},
workingset: {
bytes: 431227,
},
rss: {
bytes: 386580,
},
pagefaults: 233166,
majorpagefaults: 0,
},
start_time: "2021-03-30T07:59:06Z",
name: "container-name-44",
},
namespace: "namespace26",
},
},
{
create: {},
},
{
"@timestamp": "2022-06-21T15:44:40Z",
kubernetes: {
host: "gke-apps-0",
node: "gke-apps-0-0",
pod: "gke-apps-0-0-0",
container: {
cpu: {
usage: {
nanocores: 86706,
core: {
ns: 12828317850,
},
node: {
pct: 0.0000277905,
},
limit: {
pct: 0.0000277905,
},
},
},
memory: {
available: {
bytes: 567160996,
},
usage: {
bytes: 103266017,
node: {
pct: 0.01770037710617187,
},
limit: {
pct: 0.00009923134671484496,
},
},
workingset: {
bytes: 1724908,
},
rss: {
bytes: 105431,
},
pagefaults: 233166,
majorpagefaults: 0,
},
start_time: "2021-03-30T07:59:06Z",
name: "container-name-44",
},
namespace: "namespace26",
},
},
{
create: {},
},
{
"@timestamp": "2022-06-21T15:44:00Z",
kubernetes: {
host: "gke-apps-0",
node: "gke-apps-0-0",
pod: "gke-apps-0-0-0",
container: {
cpu: {
usage: {
nanocores: 150069,
core: {
ns: 12828317850,
},
node: {
pct: 0.0000277905,
},
limit: {
pct: 0.0000277905,
},
},
},
memory: {
available: {
bytes: 639054643,
},
usage: {
bytes: 265142477,
node: {
pct: 0.01770037710617187,
},
limit: {
pct: 0.00009923134671484496,
},
},
workingset: {
bytes: 1786511,
},
rss: {
bytes: 189235,
},
pagefaults: 138172,
majorpagefaults: 0,
},
start_time: "2021-03-30T07:59:06Z",
name: "container-name-44",
},
namespace: "namespace26",
},
},
{
create: {},
},
{
"@timestamp": "2022-06-21T15:42:40Z",
kubernetes: {
host: "gke-apps-0",
node: "gke-apps-0-0",
pod: "gke-apps-0-0-0",
container: {
cpu: {
usage: {
nanocores: 82260,
core: {
ns: 12828317850,
},
node: {
pct: 0.0000277905,
},
limit: {
pct: 0.0000277905,
},
},
},
memory: {
available: {
bytes: 854735585,
},
usage: {
bytes: 309798052,
node: {
pct: 0.01770037710617187,
},
limit: {
pct: 0.00009923134671484496,
},
},
workingset: {
bytes: 924058,
},
rss: {
bytes: 110838,
},
pagefaults: 259073,
majorpagefaults: 0,
},
start_time: "2021-03-30T07:59:06Z",
name: "container-name-44",
},
namespace: "namespace26",
},
},
{
create: {},
},
{
"@timestamp": "2022-06-21T15:42:10Z",
kubernetes: {
host: "gke-apps-0",
node: "gke-apps-0-0",
pod: "gke-apps-0-0-0",
container: {
cpu: {
usage: {
nanocores: 153404,
core: {
ns: 12828317850,
},
node: {
pct: 0.0000277905,
},
limit: {
pct: 0.0000277905,
},
},
},
memory: {
available: {
bytes: 279586406,
},
usage: {
bytes: 214904955,
node: {
pct: 0.01770037710617187,
},
limit: {
pct: 0.00009923134671484496,
},
},
workingset: {
bytes: 1047265,
},
rss: {
bytes: 91914,
},
pagefaults: 302252,
majorpagefaults: 0,
},
start_time: "2021-03-30T07:59:06Z",
name: "container-name-44",
},
namespace: "namespace26",
},
},
{
create: {},
},
{
"@timestamp": "2022-06-21T15:40:20Z",
kubernetes: {
host: "gke-apps-0",
node: "gke-apps-0-0",
pod: "gke-apps-0-0-0",
container: {
cpu: {
usage: {
nanocores: 125613,
core: {
ns: 12828317850,
},
node: {
pct: 0.0000277905,
},
limit: {
pct: 0.0000277905,
},
},
},
memory: {
available: {
bytes: 822782853,
},
usage: {
bytes: 100475044,
node: {
pct: 0.01770037710617187,
},
limit: {
pct: 0.00009923134671484496,
},
},
workingset: {
bytes: 2109932,
},
rss: {
bytes: 278446,
},
pagefaults: 74843,
majorpagefaults: 0,
},
start_time: "2021-03-30T07:59:06Z",
name: "container-name-44",
},
namespace: "namespace26",
},
},
{
create: {},
},
{
"@timestamp": "2022-06-21T15:40:10Z",
kubernetes: {
host: "gke-apps-0",
node: "gke-apps-0-0",
pod: "gke-apps-0-0-0",
container: {
cpu: {
usage: {
nanocores: 100046,
core: {
ns: 12828317850,
},
node: {
pct: 0.0000277905,
},
limit: {
pct: 0.0000277905,
},
},
},
memory: {
available: {
bytes: 567160996,
},
usage: {
bytes: 362826547,
node: {
pct: 0.01770037710617187,
},
limit: {
pct: 0.00009923134671484496,
},
},
workingset: {
bytes: 1986724,
},
rss: {
bytes: 402801,
},
pagefaults: 296495,
majorpagefaults: 0,
},
start_time: "2021-03-30T07:59:06Z",
name: "container-name-44",
},
namespace: "namespace26",
},
},
{
create: {},
},
{
"@timestamp": "2022-06-21T15:38:30Z",
kubernetes: {
host: "gke-apps-0",
node: "gke-apps-0-0",
pod: "gke-apps-0-0-0",
container: {
cpu: {
usage: {
nanocores: 40018,
core: {
ns: 12828317850,
},
node: {
pct: 0.0000277905,
},
limit: {
pct: 0.0000277905,
},
},
},
memory: {
available: {
bytes: 1062428344,
},
usage: {
bytes: 265142477,
node: {
pct: 0.01770037710617187,
},
limit: {
pct: 0.00009923134671484496,
},
},
workingset: {
bytes: 2294743,
},
rss: {
bytes: 340623,
},
pagefaults: 224530,
majorpagefaults: 0,
},
start_time: "2021-03-30T07:59:06Z",
name: "container-name-44",
},
namespace: "namespace26",
},
},
],
});
console.log(response);
PUT /my-data-stream/_bulk?refresh&pipeline=my-timestamp-pipeline
{"create": {}}
{"@timestamp":"2022-06-21T15:49:00Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":91153,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":463314616},"usage":{"bytes":307007078,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":585236},"rss":{"bytes":102728},"pagefaults":120901,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:45:50Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":124501,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":982546514},"usage":{"bytes":360035574,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1339884},"rss":{"bytes":381174},"pagefaults":178473,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:44:50Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":38907,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":862723768},"usage":{"bytes":379572388,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":431227},"rss":{"bytes":386580},"pagefaults":233166,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:44:40Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":86706,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":567160996},"usage":{"bytes":103266017,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1724908},"rss":{"bytes":105431},"pagefaults":233166,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:44:00Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":150069,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":639054643},"usage":{"bytes":265142477,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1786511},"rss":{"bytes":189235},"pagefaults":138172,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:42:40Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":82260,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":854735585},"usage":{"bytes":309798052,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":924058},"rss":{"bytes":110838},"pagefaults":259073,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:42:10Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":153404,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":279586406},"usage":{"bytes":214904955,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1047265},"rss":{"bytes":91914},"pagefaults":302252,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:40:20Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":125613,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":822782853},"usage":{"bytes":100475044,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":2109932},"rss":{"bytes":278446},"pagefaults":74843,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:40:10Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":100046,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":567160996},"usage":{"bytes":362826547,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1986724},"rss":{"bytes":402801},"pagefaults":296495,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:38:30Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":40018,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":1062428344},"usage":{"bytes":265142477,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":2294743},"rss":{"bytes":340623},"pagefaults":224530,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
You can use the search API to check if the documents have been indexed correctly:
resp = client.search(
index="my-data-stream",
)
print(resp)
response = client.search(
index: 'my-data-stream'
)
puts response
const response = await client.search({
index: "my-data-stream",
});
console.log(response);
GET /my-data-stream/_search
Run the following aggregation on the data to calculate some interesting statistics:
resp = client.search(
index="my-data-stream",
size=0,
aggs={
"tsid": {
"terms": {
"field": "_tsid"
},
"aggs": {
"over_time": {
"date_histogram": {
"field": "@timestamp",
"fixed_interval": "1d"
},
"aggs": {
"min": {
"min": {
"field": "kubernetes.container.memory.usage.bytes"
}
},
"max": {
"max": {
"field": "kubernetes.container.memory.usage.bytes"
}
},
"avg": {
"avg": {
"field": "kubernetes.container.memory.usage.bytes"
}
}
}
}
}
}
},
)
print(resp)
response = client.search(
index: 'my-data-stream',
body: {
size: 0,
aggregations: {
tsid: {
terms: {
field: '_tsid'
},
aggregations: {
over_time: {
date_histogram: {
field: '@timestamp',
fixed_interval: '1d'
},
aggregations: {
min: {
min: {
field: 'kubernetes.container.memory.usage.bytes'
}
},
max: {
max: {
field: 'kubernetes.container.memory.usage.bytes'
}
},
avg: {
avg: {
field: 'kubernetes.container.memory.usage.bytes'
}
}
}
}
}
}
}
}
)
puts response
const response = await client.search({
index: "my-data-stream",
size: 0,
aggs: {
tsid: {
terms: {
field: "_tsid",
},
aggs: {
over_time: {
date_histogram: {
field: "@timestamp",
fixed_interval: "1d",
},
aggs: {
min: {
min: {
field: "kubernetes.container.memory.usage.bytes",
},
},
max: {
max: {
field: "kubernetes.container.memory.usage.bytes",
},
},
avg: {
avg: {
field: "kubernetes.container.memory.usage.bytes",
},
},
},
},
},
},
},
});
console.log(response);
GET /my-data-stream/_search
{
"size": 0,
"aggs": {
"tsid": {
"terms": {
"field": "_tsid"
},
"aggs": {
"over_time": {
"date_histogram": {
"field": "@timestamp",
"fixed_interval": "1d"
},
"aggs": {
"min": {
"min": {
"field": "kubernetes.container.memory.usage.bytes"
}
},
"max": {
"max": {
"field": "kubernetes.container.memory.usage.bytes"
}
},
"avg": {
"avg": {
"field": "kubernetes.container.memory.usage.bytes"
}
}
}
}
}
}
}
}
Downsample the TSDS
A TSDS can’t be downsampled directly. You need to downsample its backing indices instead. You can see the backing index for your data stream by running:
resp = client.indices.get_data_stream(
name="my-data-stream",
)
print(resp)
response = client.indices.get_data_stream(
name: 'my-data-stream'
)
puts response
const response = await client.indices.getDataStream({
name: "my-data-stream",
});
console.log(response);
GET /_data_stream/my-data-stream
This returns:
{
"data_streams": [
{
"name": "my-data-stream",
"timestamp_field": {
"name": "@timestamp"
},
"indices": [
{
"index_name": ".ds-my-data-stream-2023.07.26-000001",
"index_uuid": "ltOJGmqgTVm4T-Buoe7Acg",
"prefer_ilm": true,
"managed_by": "Unmanaged"
}
],
"generation": 1,
"status": "GREEN",
"next_generation_managed_by": "Unmanaged",
"prefer_ilm": true,
"template": "my-data-stream-template",
"hidden": false,
"system": false,
"allow_custom_routing": false,
"replicated": false,
"rollover_on_write": false,
"time_series": {
"temporal_ranges": [
{
"start": "2023-07-26T09:26:42.000Z",
"end": "2023-07-26T13:26:42.000Z"
}
]
}
}
]
}
The backing index for this data stream. |
Before a backing index can be downsampled, the TSDS needs to be rolled over and the old index needs to be made read-only.
Roll over the TSDS using the rollover API:
resp = client.indices.rollover(
alias="my-data-stream",
)
print(resp)
response = client.indices.rollover(
alias: 'my-data-stream'
)
puts response
const response = await client.indices.rollover({
alias: "my-data-stream",
});
console.log(response);
POST /my-data-stream/_rollover/
Copy the name of the old_index
from the response. In the following steps, replace the index name with that of your old_index
.
The old index needs to be set to read-only mode. Run the following request:
resp = client.indices.add_block(
index=".ds-my-data-stream-2023.07.26-000001",
block="write",
)
print(resp)
response = client.indices.add_block(
index: '.ds-my-data-stream-2023.07.26-000001',
block: 'write'
)
puts response
const response = await client.indices.addBlock({
index: ".ds-my-data-stream-2023.07.26-000001",
block: "write",
});
console.log(response);
PUT /.ds-my-data-stream-2023.07.26-000001/_block/write
Next, use the downsample API to downsample the index, setting the time series interval to one hour:
resp = client.indices.downsample(
index=".ds-my-data-stream-2023.07.26-000001",
target_index=".ds-my-data-stream-2023.07.26-000001-downsample",
config={
"fixed_interval": "1h"
},
)
print(resp)
response = client.indices.downsample(
index: '.ds-my-data-stream-2023.07.26-000001',
target_index: '.ds-my-data-stream-2023.07.26-000001-downsample',
body: {
fixed_interval: '1h'
}
)
puts response
const response = await client.indices.downsample({
index: ".ds-my-data-stream-2023.07.26-000001",
target_index: ".ds-my-data-stream-2023.07.26-000001-downsample",
config: {
fixed_interval: "1h",
},
});
console.log(response);
POST /.ds-my-data-stream-2023.07.26-000001/_downsample/.ds-my-data-stream-2023.07.26-000001-downsample
{
"fixed_interval": "1h"
}
Now you can modify the data stream, and replace the original index with the downsampled one:
resp = client.indices.modify_data_stream(
actions=[
{
"remove_backing_index": {
"data_stream": "my-data-stream",
"index": ".ds-my-data-stream-2023.07.26-000001"
}
},
{
"add_backing_index": {
"data_stream": "my-data-stream",
"index": ".ds-my-data-stream-2023.07.26-000001-downsample"
}
}
],
)
print(resp)
const response = await client.indices.modifyDataStream({
actions: [
{
remove_backing_index: {
data_stream: "my-data-stream",
index: ".ds-my-data-stream-2023.07.26-000001",
},
},
{
add_backing_index: {
data_stream: "my-data-stream",
index: ".ds-my-data-stream-2023.07.26-000001-downsample",
},
},
],
});
console.log(response);
POST _data_stream/_modify
{
"actions": [
{
"remove_backing_index": {
"data_stream": "my-data-stream",
"index": ".ds-my-data-stream-2023.07.26-000001"
}
},
{
"add_backing_index": {
"data_stream": "my-data-stream",
"index": ".ds-my-data-stream-2023.07.26-000001-downsample"
}
}
]
}
You can now delete the old backing index. But be aware this will delete the original data. Don’t delete the index if you may need the original data in the future.
View the results
Re-run the earlier search query (note that when querying downsampled indices there are a few nuances to be aware of):
resp = client.search(
index="my-data-stream",
)
print(resp)
response = client.search(
index: 'my-data-stream'
)
puts response
const response = await client.search({
index: "my-data-stream",
});
console.log(response);
GET /my-data-stream/_search
The TSDS with the new downsampled backing index contains just one document. For counters, this document would only have the last value. For gauges, the field type is now aggregate_metric_double
. You see the min
, max
, sum
, and value_count
statistics based off of the original sampled metrics:
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 4,
"successful": 4,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": ".ds-my-data-stream-2023.07.26-000001-downsample",
"_id": "0eL0wC_4-45SnTNFAAABiZHbD4A",
"_score": 1,
"_source": {
"@timestamp": "2023-07-26T11:00:00.000Z",
"_doc_count": 10,
"ingest_time": "2023-07-26T11:26:42.715Z",
"kubernetes": {
"container": {
"cpu": {
"usage": {
"core": {
"ns": 12828317850
},
"limit": {
"pct": 0.0000277905
},
"nanocores": {
"min": 38907,
"max": 153404,
"sum": 992677,
"value_count": 10
},
"node": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": {
"min": 279586406,
"max": 1062428344,
"sum": 7101494721,
"value_count": 10
}
},
"majorpagefaults": 0,
"pagefaults": {
"min": 74843,
"max": 302252,
"sum": 2061071,
"value_count": 10
},
"rss": {
"bytes": {
"min": 91914,
"max": 402801,
"sum": 2389770,
"value_count": 10
}
},
"usage": {
"bytes": {
"min": 100475044,
"max": 379572388,
"sum": 2668170609,
"value_count": 10
},
"limit": {
"pct": 0.00009923134
},
"node": {
"pct": 0.017700378
}
},
"workingset": {
"bytes": {
"min": 431227,
"max": 2294743,
"sum": 14230488,
"value_count": 10
}
}
},
"name": "container-name-44",
"start_time": "2021-03-30T07:59:06.000Z"
},
"host": "gke-apps-0",
"namespace": "namespace26",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0"
}
}
}
]
}
}
Re-run the earlier aggregation. Even though the aggregation runs on the downsampled TSDS that only contains 1 document, it returns the same results as the earlier aggregation on the original TSDS.
resp = client.search(
index="my-data-stream",
size=0,
aggs={
"tsid": {
"terms": {
"field": "_tsid"
},
"aggs": {
"over_time": {
"date_histogram": {
"field": "@timestamp",
"fixed_interval": "1d"
},
"aggs": {
"min": {
"min": {
"field": "kubernetes.container.memory.usage.bytes"
}
},
"max": {
"max": {
"field": "kubernetes.container.memory.usage.bytes"
}
},
"avg": {
"avg": {
"field": "kubernetes.container.memory.usage.bytes"
}
}
}
}
}
}
},
)
print(resp)
response = client.search(
index: 'my-data-stream',
body: {
size: 0,
aggregations: {
tsid: {
terms: {
field: '_tsid'
},
aggregations: {
over_time: {
date_histogram: {
field: '@timestamp',
fixed_interval: '1d'
},
aggregations: {
min: {
min: {
field: 'kubernetes.container.memory.usage.bytes'
}
},
max: {
max: {
field: 'kubernetes.container.memory.usage.bytes'
}
},
avg: {
avg: {
field: 'kubernetes.container.memory.usage.bytes'
}
}
}
}
}
}
}
}
)
puts response
const response = await client.search({
index: "my-data-stream",
size: 0,
aggs: {
tsid: {
terms: {
field: "_tsid",
},
aggs: {
over_time: {
date_histogram: {
field: "@timestamp",
fixed_interval: "1d",
},
aggs: {
min: {
min: {
field: "kubernetes.container.memory.usage.bytes",
},
},
max: {
max: {
field: "kubernetes.container.memory.usage.bytes",
},
},
avg: {
avg: {
field: "kubernetes.container.memory.usage.bytes",
},
},
},
},
},
},
},
});
console.log(response);
GET /my-data-stream/_search
{
"size": 0,
"aggs": {
"tsid": {
"terms": {
"field": "_tsid"
},
"aggs": {
"over_time": {
"date_histogram": {
"field": "@timestamp",
"fixed_interval": "1d"
},
"aggs": {
"min": {
"min": {
"field": "kubernetes.container.memory.usage.bytes"
}
},
"max": {
"max": {
"field": "kubernetes.container.memory.usage.bytes"
}
},
"avg": {
"avg": {
"field": "kubernetes.container.memory.usage.bytes"
}
}
}
}
}
}
}
}
This example demonstrates how downsampling can dramatically reduce the number of documents stored for time series data, within whatever time boundaries you choose. It’s also possible to perform downsampling on already downsampled data, to further reduce storage and associated costs, as the time series data ages and the data resolution becomes less critical.
The recommended way to downsample a TSDS is with ILM. To learn more, try the Run downsampling with ILM example.