- k-nearest neighbor (kNN) search
- k-nearest neighbor (kNN) search
- Prerequisites
- kNN methods
- Approximate kNN
- Tune approximate kNN for speed or accuracy
- Approximate kNN using byte vectors
- Byte quantized kNN search
- Filtered kNN search
- Approximate kNN search and filtering
- Combine approximate kNN with other features
- Perform semantic search
- Search multiple kNN fields
- Search kNN with expected similarity
- Nested kNN Search
- Nested kNN Search with Inner hits
- Indexing considerations
- Limitations for approximate kNN search
- Exact kNN
- k-nearest neighbor (kNN) search
k-nearest neighbor (kNN) search
k-nearest neighbor (kNN) search
A k-nearest neighbor (kNN) search finds the k nearest vectors to a query vector, as measured by a similarity metric.
Common use cases for kNN include:
- Relevance ranking based on natural language processing (NLP) algorithms
- Product recommendations and recommendation engines
- Similarity search for images or videos
Prerequisites
To run a kNN search, you must be able to convert your data into meaningful vector values. You can create these vectors using a natural language processing (NLP) model in Elasticsearch, or generate them outside Elasticsearch. Vectors can be added to documents as dense_vector field values. Queries are represented as vectors with the same dimension.
Design your vectors so that the closer a document’s vector is to a query vector, based on a similarity metric, the better its match.
To complete the steps in this guide, you must have the following index privileges:
create_index
ormanage
to create an index with adense_vector
fieldcreate
,index
, orwrite
to add data to the index you createdread
to search the index
kNN methods
Elasticsearch supports two methods for kNN search:
- Approximate kNN using the
knn
search option orknn
query - Exact, brute-force kNN using a
script_score
query with a vector function
In most cases, you’ll want to use approximate kNN. Approximate kNN offers lower latency at the cost of slower indexing and imperfect accuracy.
Exact, brute-force kNN guarantees accurate results but doesn’t scale well with large datasets. With this approach, a script_score
query must scan each matching document to compute the vector function, which can result in slow search speeds. However, you can improve latency by using a query to limit the number of matching documents passed to the function. If you filter your data to a small subset of documents, you can get good search performance using this approach.
Approximate kNN
Compared to other types of search, approximate kNN search has specific resource requirements. In particular, all vector data must fit in the node’s page cache for it to be efficient. Please consult the approximate kNN search tuning guide for important notes on configuration and sizing.
To run an approximate kNN search, use the knn option to search one or more dense_vector
fields with indexing enabled.
Explicitly map one or more
dense_vector
fields. Approximate kNN search requires the following mapping options:- A
similarity
value. This value determines the similarity metric used to score documents based on similarity between the query and document vector. For a list of available metrics, see the similarity parameter documentation. Thesimilarity
setting defaults tocosine
.
resp = client.indices.create(
index="image-index",
mappings={
"properties": {
"image-vector": {
"type": "dense_vector",
"dims": 3,
"similarity": "l2_norm"
},
"title-vector": {
"type": "dense_vector",
"dims": 5,
"similarity": "l2_norm"
},
"title": {
"type": "text"
},
"file-type": {
"type": "keyword"
}
}
},
)
print(resp)
response = client.indices.create(
index: 'image-index',
body: {
mappings: {
properties: {
"image-vector": {
type: 'dense_vector',
dims: 3,
similarity: 'l2_norm'
},
"title-vector": {
type: 'dense_vector',
dims: 5,
similarity: 'l2_norm'
},
title: {
type: 'text'
},
"file-type": {
type: 'keyword'
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "image-index",
mappings: {
properties: {
"image-vector": {
type: "dense_vector",
dims: 3,
similarity: "l2_norm",
},
"title-vector": {
type: "dense_vector",
dims: 5,
similarity: "l2_norm",
},
title: {
type: "text",
},
"file-type": {
type: "keyword",
},
},
},
});
console.log(response);
PUT image-index
{
"mappings": {
"properties": {
"image-vector": {
"type": "dense_vector",
"dims": 3,
"similarity": "l2_norm"
},
"title-vector": {
"type": "dense_vector",
"dims": 5,
"similarity": "l2_norm"
},
"title": {
"type": "text"
},
"file-type": {
"type": "keyword"
}
}
}
}
- A
Index your data.
POST image-index/_bulk?refresh=true
{ "index": { "_id": "1" } }
{ "image-vector": [1, 5, -20], "title-vector": [12, 50, -10, 0, 1], "title": "moose family", "file-type": "jpg" }
{ "index": { "_id": "2" } }
{ "image-vector": [42, 8, -15], "title-vector": [25, 1, 4, -12, 2], "title": "alpine lake", "file-type": "png" }
{ "index": { "_id": "3" } }
{ "image-vector": [15, 11, 23], "title-vector": [1, 5, 25, 50, 20], "title": "full moon", "file-type": "jpg" }
...
Run the search using the knn option or the knn query (expert case).
resp = client.search(
index="image-index",
knn={
"field": "image-vector",
"query_vector": [
-5,
9,
-12
],
"k": 10,
"num_candidates": 100
},
fields=[
"title",
"file-type"
],
)
print(resp)
response = client.search(
index: 'image-index',
body: {
knn: {
field: 'image-vector',
query_vector: [
-5,
9,
-12
],
k: 10,
num_candidates: 100
},
fields: [
'title',
'file-type'
]
}
)
puts response
const response = await client.search({
index: "image-index",
knn: {
field: "image-vector",
query_vector: [-5, 9, -12],
k: 10,
num_candidates: 100,
},
fields: ["title", "file-type"],
});
console.log(response);
POST image-index/_search
{
"knn": {
"field": "image-vector",
"query_vector": [-5, 9, -12],
"k": 10,
"num_candidates": 100
},
"fields": [ "title", "file-type" ]
}
The document _score is determined by the similarity between the query and document vector. See similarity for more information on how kNN search scores are computed.
Support for approximate kNN search was added in version 8.0. Before this, dense_vector
fields did not support enabling index
in the mapping. If you created an index prior to 8.0 containing dense_vector
fields, then to support approximate kNN search the data must be reindexed using a new field mapping that sets index: true
which is the default option.
Tune approximate kNN for speed or accuracy
To gather results, the kNN search API finds a num_candidates
number of approximate nearest neighbor candidates on each shard. The search computes the similarity of these candidate vectors to the query vector, selecting the k
most similar results from each shard. The search then merges the results from each shard to return the global top k
nearest neighbors.
You can increase num_candidates
for more accurate results at the cost of slower search speeds. A search with a high value for num_candidates
considers more candidates from each shard. This takes more time, but the search has a higher probability of finding the true k
top nearest neighbors.
Similarly, you can decrease num_candidates
for faster searches with potentially less accurate results.
Approximate kNN using byte vectors
The approximate kNN search API supports byte
value vectors in addition to float
value vectors. Use the knn option to search a dense_vector
field with element_type set to byte
and indexing enabled.
Explicitly map one or more
dense_vector
fields with element_type set tobyte
and indexing enabled.resp = client.indices.create(
index="byte-image-index",
mappings={
"properties": {
"byte-image-vector": {
"type": "dense_vector",
"element_type": "byte",
"dims": 2
},
"title": {
"type": "text"
}
}
},
)
print(resp)
response = client.indices.create(
index: 'byte-image-index',
body: {
mappings: {
properties: {
"byte-image-vector": {
type: 'dense_vector',
element_type: 'byte',
dims: 2
},
title: {
type: 'text'
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "byte-image-index",
mappings: {
properties: {
"byte-image-vector": {
type: "dense_vector",
element_type: "byte",
dims: 2,
},
title: {
type: "text",
},
},
},
});
console.log(response);
PUT byte-image-index
{
"mappings": {
"properties": {
"byte-image-vector": {
"type": "dense_vector",
"element_type": "byte",
"dims": 2
},
"title": {
"type": "text"
}
}
}
}
Index your data ensuring all vector values are integers within the range [-128, 127].
resp = client.bulk(
index="byte-image-index",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"byte-image-vector": [
5,
-20
],
"title": "moose family"
},
{
"index": {
"_id": "2"
}
},
{
"byte-image-vector": [
8,
-15
],
"title": "alpine lake"
},
{
"index": {
"_id": "3"
}
},
{
"byte-image-vector": [
11,
23
],
"title": "full moon"
}
],
)
print(resp)
response = client.bulk(
index: 'byte-image-index',
refresh: true,
body: [
{
index: {
_id: '1'
}
},
{
"byte-image-vector": [
5,
-20
],
title: 'moose family'
},
{
index: {
_id: '2'
}
},
{
"byte-image-vector": [
8,
-15
],
title: 'alpine lake'
},
{
index: {
_id: '3'
}
},
{
"byte-image-vector": [
11,
23
],
title: 'full moon'
}
]
)
puts response
const response = await client.bulk({
index: "byte-image-index",
refresh: "true",
operations: [
{
index: {
_id: "1",
},
},
{
"byte-image-vector": [5, -20],
title: "moose family",
},
{
index: {
_id: "2",
},
},
{
"byte-image-vector": [8, -15],
title: "alpine lake",
},
{
index: {
_id: "3",
},
},
{
"byte-image-vector": [11, 23],
title: "full moon",
},
],
});
console.log(response);
POST byte-image-index/_bulk?refresh=true
{ "index": { "_id": "1" } }
{ "byte-image-vector": [5, -20], "title": "moose family" }
{ "index": { "_id": "2" } }
{ "byte-image-vector": [8, -15], "title": "alpine lake" }
{ "index": { "_id": "3" } }
{ "byte-image-vector": [11, 23], "title": "full moon" }
Run the search using the knn option ensuring the
query_vector
values are integers within the range [-128, 127].resp = client.search(
index="byte-image-index",
knn={
"field": "byte-image-vector",
"query_vector": [
-5,
9
],
"k": 10,
"num_candidates": 100
},
fields=[
"title"
],
)
print(resp)
response = client.search(
index: 'byte-image-index',
body: {
knn: {
field: 'byte-image-vector',
query_vector: [
-5,
9
],
k: 10,
num_candidates: 100
},
fields: [
'title'
]
}
)
puts response
const response = await client.search({
index: "byte-image-index",
knn: {
field: "byte-image-vector",
query_vector: [-5, 9],
k: 10,
num_candidates: 100,
},
fields: ["title"],
});
console.log(response);
POST byte-image-index/_search
{
"knn": {
"field": "byte-image-vector",
"query_vector": [-5, 9],
"k": 10,
"num_candidates": 100
},
"fields": [ "title" ]
}
Note: In addition to the standard byte array, one can also provide a hex-encoded string value for the query_vector
param. As an example, the search request above can also be expressed as follows, which would yield the same results
resp = client.search(
index="byte-image-index",
knn={
"field": "byte-image-vector",
"query_vector": "fb09",
"k": 10,
"num_candidates": 100
},
fields=[
"title"
],
)
print(resp)
response = client.search(
index: 'byte-image-index',
body: {
knn: {
field: 'byte-image-vector',
query_vector: 'fb09',
k: 10,
num_candidates: 100
},
fields: [
'title'
]
}
)
puts response
const response = await client.search({
index: "byte-image-index",
knn: {
field: "byte-image-vector",
query_vector: "fb09",
k: 10,
num_candidates: 100,
},
fields: ["title"],
});
console.log(response);
POST byte-image-index/_search
{
"knn": {
"field": "byte-image-vector",
"query_vector": "fb09",
"k": 10,
"num_candidates": 100
},
"fields": [ "title" ]
}
Byte quantized kNN search
If you want to provide float
vectors, but want the memory savings of byte
vectors, you can use the quantization feature. Quantization allows you to provide float
vectors, but internally they are indexed as byte
vectors. Additionally, the original float
vectors are still retained in the index.
The default index type for dense_vector
is int8_hnsw
.
To use quantization, you can use the index type int8_hnsw
or int4_hnsw
object in the dense_vector
mapping.
resp = client.indices.create(
index="quantized-image-index",
mappings={
"properties": {
"image-vector": {
"type": "dense_vector",
"element_type": "float",
"dims": 2,
"index": True,
"index_options": {
"type": "int8_hnsw"
}
},
"title": {
"type": "text"
}
}
},
)
print(resp)
response = client.indices.create(
index: 'quantized-image-index',
body: {
mappings: {
properties: {
"image-vector": {
type: 'dense_vector',
element_type: 'float',
dims: 2,
index: true,
index_options: {
type: 'int8_hnsw'
}
},
title: {
type: 'text'
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "quantized-image-index",
mappings: {
properties: {
"image-vector": {
type: "dense_vector",
element_type: "float",
dims: 2,
index: true,
index_options: {
type: "int8_hnsw",
},
},
title: {
type: "text",
},
},
},
});
console.log(response);
PUT quantized-image-index
{
"mappings": {
"properties": {
"image-vector": {
"type": "dense_vector",
"element_type": "float",
"dims": 2,
"index": true,
"index_options": {
"type": "int8_hnsw"
}
},
"title": {
"type": "text"
}
}
}
}
Index your
float
vectors.resp = client.bulk(
index="quantized-image-index",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"image-vector": [
0.1,
-2
],
"title": "moose family"
},
{
"index": {
"_id": "2"
}
},
{
"image-vector": [
0.75,
-1
],
"title": "alpine lake"
},
{
"index": {
"_id": "3"
}
},
{
"image-vector": [
1.2,
0.1
],
"title": "full moon"
}
],
)
print(resp)
response = client.bulk(
index: 'quantized-image-index',
refresh: true,
body: [
{
index: {
_id: '1'
}
},
{
"image-vector": [
0.1,
-2
],
title: 'moose family'
},
{
index: {
_id: '2'
}
},
{
"image-vector": [
0.75,
-1
],
title: 'alpine lake'
},
{
index: {
_id: '3'
}
},
{
"image-vector": [
1.2,
0.1
],
title: 'full moon'
}
]
)
puts response
const response = await client.bulk({
index: "quantized-image-index",
refresh: "true",
operations: [
{
index: {
_id: "1",
},
},
{
"image-vector": [0.1, -2],
title: "moose family",
},
{
index: {
_id: "2",
},
},
{
"image-vector": [0.75, -1],
title: "alpine lake",
},
{
index: {
_id: "3",
},
},
{
"image-vector": [1.2, 0.1],
title: "full moon",
},
],
});
console.log(response);
POST quantized-image-index/_bulk?refresh=true
{ "index": { "_id": "1" } }
{ "image-vector": [0.1, -2], "title": "moose family" }
{ "index": { "_id": "2" } }
{ "image-vector": [0.75, -1], "title": "alpine lake" }
{ "index": { "_id": "3" } }
{ "image-vector": [1.2, 0.1], "title": "full moon" }
Run the search using the knn option. When searching, the
float
vector is automatically quantized to abyte
vector.resp = client.search(
index="quantized-image-index",
knn={
"field": "image-vector",
"query_vector": [
0.1,
-2
],
"k": 10,
"num_candidates": 100
},
fields=[
"title"
],
)
print(resp)
response = client.search(
index: 'quantized-image-index',
body: {
knn: {
field: 'image-vector',
query_vector: [
0.1,
-2
],
k: 10,
num_candidates: 100
},
fields: [
'title'
]
}
)
puts response
const response = await client.search({
index: "quantized-image-index",
knn: {
field: "image-vector",
query_vector: [0.1, -2],
k: 10,
num_candidates: 100,
},
fields: ["title"],
});
console.log(response);
POST quantized-image-index/_search
{
"knn": {
"field": "image-vector",
"query_vector": [0.1, -2],
"k": 10,
"num_candidates": 100
},
"fields": [ "title" ]
}
Since the original float
vectors are still retained in the index, you can optionally use them for re-scoring. Meaning, you can search over all the vectors quickly using the int8_hnsw
index and then rescore only the top k
results. This provides the best of both worlds, fast search and accurate scoring.
resp = client.search(
index="quantized-image-index",
knn={
"field": "image-vector",
"query_vector": [
0.1,
-2
],
"k": 15,
"num_candidates": 100
},
fields=[
"title"
],
rescore={
"window_size": 10,
"query": {
"rescore_query": {
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "cosineSimilarity(params.query_vector, 'image-vector') + 1.0",
"params": {
"query_vector": [
0.1,
-2
]
}
}
}
}
}
},
)
print(resp)
response = client.search(
index: 'quantized-image-index',
body: {
knn: {
field: 'image-vector',
query_vector: [
0.1,
-2
],
k: 15,
num_candidates: 100
},
fields: [
'title'
],
rescore: {
window_size: 10,
query: {
rescore_query: {
script_score: {
query: {
match_all: {}
},
script: {
source: "cosineSimilarity(params.query_vector, 'image-vector') + 1.0",
params: {
query_vector: [
0.1,
-2
]
}
}
}
}
}
}
}
)
puts response
const response = await client.search({
index: "quantized-image-index",
knn: {
field: "image-vector",
query_vector: [0.1, -2],
k: 15,
num_candidates: 100,
},
fields: ["title"],
rescore: {
window_size: 10,
query: {
rescore_query: {
script_score: {
query: {
match_all: {},
},
script: {
source:
"cosineSimilarity(params.query_vector, 'image-vector') + 1.0",
params: {
query_vector: [0.1, -2],
},
},
},
},
},
},
});
console.log(response);
POST quantized-image-index/_search
{
"knn": {
"field": "image-vector",
"query_vector": [0.1, -2],
"k": 15,
"num_candidates": 100
},
"fields": [ "title" ],
"rescore": {
"window_size": 10,
"query": {
"rescore_query": {
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "cosineSimilarity(params.query_vector, 'image-vector') + 1.0",
"params": {
"query_vector": [0.1, -2]
}
}
}
}
}
}
}
Filtered kNN search
The kNN search API supports restricting the search using a filter. The search will return the top k
documents that also match the filter query.
The following request performs an approximate kNN search filtered by the file-type
field:
resp = client.search(
index="image-index",
knn={
"field": "image-vector",
"query_vector": [
54,
10,
-2
],
"k": 5,
"num_candidates": 50,
"filter": {
"term": {
"file-type": "png"
}
}
},
fields=[
"title"
],
source=False,
)
print(resp)
response = client.search(
index: 'image-index',
body: {
knn: {
field: 'image-vector',
query_vector: [
54,
10,
-2
],
k: 5,
num_candidates: 50,
filter: {
term: {
"file-type": 'png'
}
}
},
fields: [
'title'
],
_source: false
}
)
puts response
const response = await client.search({
index: "image-index",
knn: {
field: "image-vector",
query_vector: [54, 10, -2],
k: 5,
num_candidates: 50,
filter: {
term: {
"file-type": "png",
},
},
},
fields: ["title"],
_source: false,
});
console.log(response);
POST image-index/_search
{
"knn": {
"field": "image-vector",
"query_vector": [54, 10, -2],
"k": 5,
"num_candidates": 50,
"filter": {
"term": {
"file-type": "png"
}
}
},
"fields": ["title"],
"_source": false
}
The filter is applied during the approximate kNN search to ensure that k
matching documents are returned. This contrasts with a post-filtering approach, where the filter is applied after the approximate kNN search completes. Post-filtering has the downside that it sometimes returns fewer than k results, even when there are enough matching documents.
Approximate kNN search and filtering
Unlike conventional query filtering, where more restrictive filters typically lead to faster queries, applying filters in an approximate kNN search with an HNSW index can decrease performance. This is because searching the HNSW graph requires additional exploration to obtain the num_candidates
that meet the filter criteria.
To avoid significant performance drawbacks, Lucene implements the following strategies per segment:
- If the filtered document count is less than or equal to num_candidates, the search bypasses the HNSW graph and uses a brute force search on the filtered documents.
- While exploring the HNSW graph, if the number of nodes explored exceeds the number of documents that satisfy the filter, the search will stop exploring the graph and switch to a brute force search over the filtered documents.
Combine approximate kNN with other features
You can perform hybrid retrieval by providing both the knn option and a query:
resp = client.search(
index="image-index",
query={
"match": {
"title": {
"query": "mountain lake",
"boost": 0.9
}
}
},
knn={
"field": "image-vector",
"query_vector": [
54,
10,
-2
],
"k": 5,
"num_candidates": 50,
"boost": 0.1
},
size=10,
)
print(resp)
response = client.search(
index: 'image-index',
body: {
query: {
match: {
title: {
query: 'mountain lake',
boost: 0.9
}
}
},
knn: {
field: 'image-vector',
query_vector: [
54,
10,
-2
],
k: 5,
num_candidates: 50,
boost: 0.1
},
size: 10
}
)
puts response
const response = await client.search({
index: "image-index",
query: {
match: {
title: {
query: "mountain lake",
boost: 0.9,
},
},
},
knn: {
field: "image-vector",
query_vector: [54, 10, -2],
k: 5,
num_candidates: 50,
boost: 0.1,
},
size: 10,
});
console.log(response);
POST image-index/_search
{
"query": {
"match": {
"title": {
"query": "mountain lake",
"boost": 0.9
}
}
},
"knn": {
"field": "image-vector",
"query_vector": [54, 10, -2],
"k": 5,
"num_candidates": 50,
"boost": 0.1
},
"size": 10
}
This search finds the global top k = 5
vector matches, combines them with the matches from the match
query, and finally returns the 10 top-scoring results. The knn
and query
matches are combined through a disjunction, as if you took a boolean or between them. The top k
vector results represent the global nearest neighbors across all index shards.
The score of each hit is the sum of the knn
and query
scores. You can specify a boost
value to give a weight to each score in the sum. In the example above, the scores will be calculated as
score = 0.9 * match_score + 0.1 * knn_score
The knn
option can also be used with aggregations. In general, Elasticsearch computes aggregations over all documents that match the search. So for approximate kNN search, aggregations are calculated on the top k
nearest documents. If the search also includes a query
, then aggregations are calculated on the combined set of knn
and query
matches.
Perform semantic search
kNN search enables you to perform semantic search by using a previously deployed text embedding model. Instead of literal matching on search terms, semantic search retrieves results based on the intent and the contextual meaning of a search query.
Under the hood, the text embedding NLP model generates a dense vector from the input query string called model_text
you provide. Then, it is searched against an index containing dense vectors created with the same text embedding machine learning model. The search results are semantically similar as learned by the model.
To perform semantic search:
- you need an index that contains the dense vector representation of the input data to search against,
- you must use the same text embedding model for search that you used to create the dense vectors from the input data,
- the text embedding NLP model deployment must be started.
Reference the deployed text embedding model or the model deployment in the query_vector_builder
object and provide the search query as model_text
:
(...)
{
"knn": {
"field": "dense-vector-field",
"k": 10,
"num_candidates": 100,
"query_vector_builder": {
"text_embedding": {
"model_id": "my-text-embedding-model",
"model_text": "The opposite of blue"
}
}
}
}
(...)
The natural language processing task to perform. It must be | |
The ID of the text embedding model to use to generate the dense vectors from the query string. Use the same model that generated the embeddings from the input text in the index you search against. You can use the value of the | |
The query string from which the model generates the dense vector representation. |
For more information on how to deploy a trained model and use it to create text embeddings, refer to this end-to-end example.
Search multiple kNN fields
In addition to hybrid retrieval, you can search more than one kNN vector field at a time:
resp = client.search(
index="image-index",
query={
"match": {
"title": {
"query": "mountain lake",
"boost": 0.9
}
}
},
knn=[
{
"field": "image-vector",
"query_vector": [
54,
10,
-2
],
"k": 5,
"num_candidates": 50,
"boost": 0.1
},
{
"field": "title-vector",
"query_vector": [
1,
20,
-52,
23,
10
],
"k": 10,
"num_candidates": 10,
"boost": 0.5
}
],
size=10,
)
print(resp)
response = client.search(
index: 'image-index',
body: {
query: {
match: {
title: {
query: 'mountain lake',
boost: 0.9
}
}
},
knn: [
{
field: 'image-vector',
query_vector: [
54,
10,
-2
],
k: 5,
num_candidates: 50,
boost: 0.1
},
{
field: 'title-vector',
query_vector: [
1,
20,
-52,
23,
10
],
k: 10,
num_candidates: 10,
boost: 0.5
}
],
size: 10
}
)
puts response
const response = await client.search({
index: "image-index",
query: {
match: {
title: {
query: "mountain lake",
boost: 0.9,
},
},
},
knn: [
{
field: "image-vector",
query_vector: [54, 10, -2],
k: 5,
num_candidates: 50,
boost: 0.1,
},
{
field: "title-vector",
query_vector: [1, 20, -52, 23, 10],
k: 10,
num_candidates: 10,
boost: 0.5,
},
],
size: 10,
});
console.log(response);
POST image-index/_search
{
"query": {
"match": {
"title": {
"query": "mountain lake",
"boost": 0.9
}
}
},
"knn": [ {
"field": "image-vector",
"query_vector": [54, 10, -2],
"k": 5,
"num_candidates": 50,
"boost": 0.1
},
{
"field": "title-vector",
"query_vector": [1, 20, -52, 23, 10],
"k": 10,
"num_candidates": 10,
"boost": 0.5
}],
"size": 10
}
This search finds the global top k = 5
vector matches for image-vector
and the global k = 10
for the title-vector
. These top values are then combined with the matches from the match
query and the top-10 documents are returned. The multiple knn
entries and the query
matches are combined through a disjunction, as if you took a boolean or between them. The top k
vector results represent the global nearest neighbors across all index shards.
The scoring for a doc with the above configured boosts would be:
score = 0.9 * match_score + 0.1 * knn_score_image-vector + 0.5 * knn_score_title-vector
Search kNN with expected similarity
While kNN is a powerful tool, it always tries to return k
nearest neighbors. Consequently, when using knn
with a filter
, you could filter out all relevant documents and only have irrelevant ones left to search. In that situation, knn
will still do its best to return k
nearest neighbors, even though those neighbors could be far away in the vector space.
To alleviate this worry, there is a similarity
parameter available in the knn
clause. This value is the required minimum similarity for a vector to be considered a match. The knn
search flow with this parameter is as follows:
- Apply any user provided
filter
queries - Explore the vector space to get
k
vectors - Do not return any vectors that are further away than the configured
similarity
similarity
is the true similarity before it has been transformed into _score
and boost applied.
For each configured similarity, here is the corresponding inverted _score
function. This is so if you are wanting to filter from a _score
perspective, you can do this minor transformation to correctly reject irrelevant results.
l2_norm
:sqrt((1 / _score) - 1)
cosine
:(2 * _score) - 1
dot_product
:(2 * _score) - 1
max_inner_product
:_score < 1
:1 - (1 / _score)
_score >= 1
:_score - 1
Here is an example. In this example we search for the given query_vector
for k
nearest neighbors. However, with filter
applied and requiring that the found vectors have at least the provided similarity
between them.
resp = client.search(
index="image-index",
knn={
"field": "image-vector",
"query_vector": [
1,
5,
-20
],
"k": 5,
"num_candidates": 50,
"similarity": 36,
"filter": {
"term": {
"file-type": "png"
}
}
},
fields=[
"title"
],
source=False,
)
print(resp)
response = client.search(
index: 'image-index',
body: {
knn: {
field: 'image-vector',
query_vector: [
1,
5,
-20
],
k: 5,
num_candidates: 50,
similarity: 36,
filter: {
term: {
"file-type": 'png'
}
}
},
fields: [
'title'
],
_source: false
}
)
puts response
const response = await client.search({
index: "image-index",
knn: {
field: "image-vector",
query_vector: [1, 5, -20],
k: 5,
num_candidates: 50,
similarity: 36,
filter: {
term: {
"file-type": "png",
},
},
},
fields: ["title"],
_source: false,
});
console.log(response);
POST image-index/_search
{
"knn": {
"field": "image-vector",
"query_vector": [1, 5, -20],
"k": 5,
"num_candidates": 50,
"similarity": 36,
"filter": {
"term": {
"file-type": "png"
}
}
},
"fields": ["title"],
"_source": false
}
In our data set, the only document with the file type of png
has a vector of [42, 8, -15]
. The l2_norm
distance between [42, 8, -15]
and [1, 5, -20]
is 41.412
, which is greater than the configured similarity of 36
. Meaning, this search will return no hits.
Nested kNN Search
It is common for text to exceed a particular model’s token limit and requires chunking before building the embeddings for individual chunks. When using nested with dense_vector, you can achieve nearest passage retrieval without copying top-level document metadata.
Here is a simple passage vectors index that stores vectors and some top-level metadata for filtering.
resp = client.indices.create(
index="passage_vectors",
mappings={
"properties": {
"full_text": {
"type": "text"
},
"creation_time": {
"type": "date"
},
"paragraph": {
"type": "nested",
"properties": {
"vector": {
"type": "dense_vector",
"dims": 2,
"index_options": {
"type": "hnsw"
}
},
"text": {
"type": "text",
"index": False
}
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'passage_vectors',
body: {
mappings: {
properties: {
full_text: {
type: 'text'
},
creation_time: {
type: 'date'
},
paragraph: {
type: 'nested',
properties: {
vector: {
type: 'dense_vector',
dims: 2,
index_options: {
type: 'hnsw'
}
},
text: {
type: 'text',
index: false
}
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "passage_vectors",
mappings: {
properties: {
full_text: {
type: "text",
},
creation_time: {
type: "date",
},
paragraph: {
type: "nested",
properties: {
vector: {
type: "dense_vector",
dims: 2,
index_options: {
type: "hnsw",
},
},
text: {
type: "text",
index: false,
},
},
},
},
},
});
console.log(response);
PUT passage_vectors
{
"mappings": {
"properties": {
"full_text": {
"type": "text"
},
"creation_time": {
"type": "date"
},
"paragraph": {
"type": "nested",
"properties": {
"vector": {
"type": "dense_vector",
"dims": 2,
"index_options": {
"type": "hnsw"
}
},
"text": {
"type": "text",
"index": false
}
}
}
}
}
}
With the above mapping, we can index multiple passage vectors along with storing the individual passage text.
resp = client.bulk(
index="passage_vectors",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"full_text": "first paragraph another paragraph",
"creation_time": "2019-05-04",
"paragraph": [
{
"vector": [
0.45,
45
],
"text": "first paragraph",
"paragraph_id": "1"
},
{
"vector": [
0.8,
0.6
],
"text": "another paragraph",
"paragraph_id": "2"
}
]
},
{
"index": {
"_id": "2"
}
},
{
"full_text": "number one paragraph number two paragraph",
"creation_time": "2020-05-04",
"paragraph": [
{
"vector": [
1.2,
4.5
],
"text": "number one paragraph",
"paragraph_id": "1"
},
{
"vector": [
-1,
42
],
"text": "number two paragraph",
"paragraph_id": "2"
}
]
}
],
)
print(resp)
response = client.bulk(
index: 'passage_vectors',
refresh: true,
body: [
{
index: {
_id: '1'
}
},
{
full_text: 'first paragraph another paragraph',
creation_time: '2019-05-04',
paragraph: [
{
vector: [
0.45,
45
],
text: 'first paragraph',
paragraph_id: '1'
},
{
vector: [
0.8,
0.6
],
text: 'another paragraph',
paragraph_id: '2'
}
]
},
{
index: {
_id: '2'
}
},
{
full_text: 'number one paragraph number two paragraph',
creation_time: '2020-05-04',
paragraph: [
{
vector: [
1.2,
4.5
],
text: 'number one paragraph',
paragraph_id: '1'
},
{
vector: [
-1,
42
],
text: 'number two paragraph',
paragraph_id: '2'
}
]
}
]
)
puts response
const response = await client.bulk({
index: "passage_vectors",
refresh: "true",
operations: [
{
index: {
_id: "1",
},
},
{
full_text: "first paragraph another paragraph",
creation_time: "2019-05-04",
paragraph: [
{
vector: [0.45, 45],
text: "first paragraph",
paragraph_id: "1",
},
{
vector: [0.8, 0.6],
text: "another paragraph",
paragraph_id: "2",
},
],
},
{
index: {
_id: "2",
},
},
{
full_text: "number one paragraph number two paragraph",
creation_time: "2020-05-04",
paragraph: [
{
vector: [1.2, 4.5],
text: "number one paragraph",
paragraph_id: "1",
},
{
vector: [-1, 42],
text: "number two paragraph",
paragraph_id: "2",
},
],
},
],
});
console.log(response);
POST passage_vectors/_bulk?refresh=true
{ "index": { "_id": "1" } }
{ "full_text": "first paragraph another paragraph", "creation_time": "2019-05-04", "paragraph": [ { "vector": [ 0.45, 45 ], "text": "first paragraph", "paragraph_id": "1" }, { "vector": [ 0.8, 0.6 ], "text": "another paragraph", "paragraph_id": "2" } ] }
{ "index": { "_id": "2" } }
{ "full_text": "number one paragraph number two paragraph", "creation_time": "2020-05-04", "paragraph": [ { "vector": [ 1.2, 4.5 ], "text": "number one paragraph", "paragraph_id": "1" }, { "vector": [ -1, 42 ], "text": "number two paragraph", "paragraph_id": "2" } ] }
The query will seem very similar to a typical kNN search:
resp = client.search(
index="passage_vectors",
fields=[
"full_text",
"creation_time"
],
source=False,
knn={
"query_vector": [
0.45,
45
],
"field": "paragraph.vector",
"k": 2,
"num_candidates": 2
},
)
print(resp)
response = client.search(
index: 'passage_vectors',
body: {
fields: [
'full_text',
'creation_time'
],
_source: false,
knn: {
query_vector: [
0.45,
45
],
field: 'paragraph.vector',
k: 2,
num_candidates: 2
}
}
)
puts response
const response = await client.search({
index: "passage_vectors",
fields: ["full_text", "creation_time"],
_source: false,
knn: {
query_vector: [0.45, 45],
field: "paragraph.vector",
k: 2,
num_candidates: 2,
},
});
console.log(response);
POST passage_vectors/_search
{
"fields": ["full_text", "creation_time"],
"_source": false,
"knn": {
"query_vector": [
0.45,
45
],
"field": "paragraph.vector",
"k": 2,
"num_candidates": 2
}
}
Note below that even though we have 4 total vectors, we still return two documents. kNN search over nested dense_vectors will always diversify the top results over the top-level document. Meaning, "k"
top-level documents will be returned, scored by their nearest passage vector (e.g. "paragraph.vector"
).
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 1.0,
"hits": [
{
"_index": "passage_vectors",
"_id": "1",
"_score": 1.0,
"fields": {
"creation_time": [
"2019-05-04T00:00:00.000Z"
],
"full_text": [
"first paragraph another paragraph"
]
}
},
{
"_index": "passage_vectors",
"_id": "2",
"_score": 0.9997144,
"fields": {
"creation_time": [
"2020-05-04T00:00:00.000Z"
],
"full_text": [
"number one paragraph number two paragraph"
]
}
}
]
}
}
What if you wanted to filter by some top-level document metadata? You can do this by adding filter
to your knn
clause.
filter
will always be over the top-level document metadata. This means you cannot filter based on nested
field metadata.
resp = client.search(
index="passage_vectors",
fields=[
"creation_time",
"full_text"
],
source=False,
knn={
"query_vector": [
0.45,
45
],
"field": "paragraph.vector",
"k": 2,
"num_candidates": 2,
"filter": {
"bool": {
"filter": [
{
"range": {
"creation_time": {
"gte": "2019-05-01",
"lte": "2019-05-05"
}
}
}
]
}
}
},
)
print(resp)
response = client.search(
index: 'passage_vectors',
body: {
fields: [
'creation_time',
'full_text'
],
_source: false,
knn: {
query_vector: [
0.45,
45
],
field: 'paragraph.vector',
k: 2,
num_candidates: 2,
filter: {
bool: {
filter: [
{
range: {
creation_time: {
gte: '2019-05-01',
lte: '2019-05-05'
}
}
}
]
}
}
}
}
)
puts response
const response = await client.search({
index: "passage_vectors",
fields: ["creation_time", "full_text"],
_source: false,
knn: {
query_vector: [0.45, 45],
field: "paragraph.vector",
k: 2,
num_candidates: 2,
filter: {
bool: {
filter: [
{
range: {
creation_time: {
gte: "2019-05-01",
lte: "2019-05-05",
},
},
},
],
},
},
},
});
console.log(response);
POST passage_vectors/_search
{
"fields": [
"creation_time",
"full_text"
],
"_source": false,
"knn": {
"query_vector": [
0.45,
45
],
"field": "paragraph.vector",
"k": 2,
"num_candidates": 2,
"filter": {
"bool": {
"filter": [
{
"range": {
"creation_time": {
"gte": "2019-05-01",
"lte": "2019-05-05"
}
}
}
]
}
}
}
}
Now we have filtered based on the top level "creation_time"
and only one document falls within that range.
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 1.0,
"hits": [
{
"_index": "passage_vectors",
"_id": "1",
"_score": 1.0,
"fields": {
"creation_time": [
"2019-05-04T00:00:00.000Z"
],
"full_text": [
"first paragraph another paragraph"
]
}
}
]
}
}
Nested kNN Search with Inner hits
Additionally, if you wanted to extract the nearest passage for a matched document, you can supply inner_hits to the knn
clause.
When using inner_hits
and multiple knn
clauses, be sure to specify the inner_hits.name field. Otherwise, a naming clash can occur and fail the search request.
resp = client.search(
index="passage_vectors",
fields=[
"creation_time",
"full_text"
],
source=False,
knn={
"query_vector": [
0.45,
45
],
"field": "paragraph.vector",
"k": 2,
"num_candidates": 2,
"inner_hits": {
"_source": False,
"fields": [
"paragraph.text"
],
"size": 1
}
},
)
print(resp)
const response = await client.search({
index: "passage_vectors",
fields: ["creation_time", "full_text"],
_source: false,
knn: {
query_vector: [0.45, 45],
field: "paragraph.vector",
k: 2,
num_candidates: 2,
inner_hits: {
_source: false,
fields: ["paragraph.text"],
size: 1,
},
},
});
console.log(response);
POST passage_vectors/_search
{
"fields": [
"creation_time",
"full_text"
],
"_source": false,
"knn": {
"query_vector": [
0.45,
45
],
"field": "paragraph.vector",
"k": 2,
"num_candidates": 2,
"inner_hits": {
"_source": false,
"fields": [
"paragraph.text"
],
"size": 1
}
}
}
Now the result will contain the nearest found paragraph when searching.
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 1.0,
"hits": [
{
"_index": "passage_vectors",
"_id": "1",
"_score": 1.0,
"fields": {
"creation_time": [
"2019-05-04T00:00:00.000Z"
],
"full_text": [
"first paragraph another paragraph"
]
},
"inner_hits": {
"paragraph": {
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 1.0,
"hits": [
{
"_index": "passage_vectors",
"_id": "1",
"_nested": {
"field": "paragraph",
"offset": 0
},
"_score": 1.0,
"fields": {
"paragraph": [
{
"text": [
"first paragraph"
]
}
]
}
}
]
}
}
}
},
{
"_index": "passage_vectors",
"_id": "2",
"_score": 0.9997144,
"fields": {
"creation_time": [
"2020-05-04T00:00:00.000Z"
],
"full_text": [
"number one paragraph number two paragraph"
]
},
"inner_hits": {
"paragraph": {
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 0.9997144,
"hits": [
{
"_index": "passage_vectors",
"_id": "2",
"_nested": {
"field": "paragraph",
"offset": 1
},
"_score": 0.9997144,
"fields": {
"paragraph": [
{
"text": [
"number two paragraph"
]
}
]
}
}
]
}
}
}
}
]
}
}
Indexing considerations
For approximate kNN search, Elasticsearch stores the dense vector values of each segment as an HNSW graph. Indexing vectors for approximate kNN search can take substantial time because of how expensive it is to build these graphs. You may need to increase the client request timeout for index and bulk requests. The approximate kNN tuning guide contains important guidance around indexing performance, and how the index configuration can affect search performance.
In addition to its search-time tuning parameters, the HNSW algorithm has index-time parameters that trade off between the cost of building the graph, search speed, and accuracy. When setting up the dense_vector
mapping, you can use the index_options argument to adjust these parameters:
resp = client.indices.create(
index="image-index",
mappings={
"properties": {
"image-vector": {
"type": "dense_vector",
"dims": 3,
"similarity": "l2_norm",
"index_options": {
"type": "hnsw",
"m": 32,
"ef_construction": 100
}
}
}
},
)
print(resp)
response = client.indices.create(
index: 'image-index',
body: {
mappings: {
properties: {
"image-vector": {
type: 'dense_vector',
dims: 3,
similarity: 'l2_norm',
index_options: {
type: 'hnsw',
m: 32,
ef_construction: 100
}
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "image-index",
mappings: {
properties: {
"image-vector": {
type: "dense_vector",
dims: 3,
similarity: "l2_norm",
index_options: {
type: "hnsw",
m: 32,
ef_construction: 100,
},
},
},
},
});
console.log(response);
PUT image-index
{
"mappings": {
"properties": {
"image-vector": {
"type": "dense_vector",
"dims": 3,
"similarity": "l2_norm",
"index_options": {
"type": "hnsw",
"m": 32,
"ef_construction": 100
}
}
}
}
}
Limitations for approximate kNN search
- When using kNN search in cross-cluster search, the ccs_minimize_roundtrips option is not supported.
- Elasticsearch uses the HNSW algorithm to support efficient kNN search. Like most kNN algorithms, HNSW is an approximate method that sacrifices result accuracy for improved search speed. This means the results returned are not always the true k closest neighbors.
Approximate kNN search always uses the dfs_query_then_fetch search type in order to gather the global top k
matches across shards. You cannot set the search_type
explicitly when running kNN search.
Exact kNN
To run an exact kNN search, use a script_score
query with a vector function.
Explicitly map one or more
dense_vector
fields. If you don’t intend to use the field for approximate kNN, set theindex
mapping option tofalse
. This can significantly improve indexing speed.resp = client.indices.create(
index="product-index",
mappings={
"properties": {
"product-vector": {
"type": "dense_vector",
"dims": 5,
"index": False
},
"price": {
"type": "long"
}
}
},
)
print(resp)
response = client.indices.create(
index: 'product-index',
body: {
mappings: {
properties: {
"product-vector": {
type: 'dense_vector',
dims: 5,
index: false
},
price: {
type: 'long'
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "product-index",
mappings: {
properties: {
"product-vector": {
type: "dense_vector",
dims: 5,
index: false,
},
price: {
type: "long",
},
},
},
});
console.log(response);
PUT product-index
{
"mappings": {
"properties": {
"product-vector": {
"type": "dense_vector",
"dims": 5,
"index": false
},
"price": {
"type": "long"
}
}
}
}
Index your data.
POST product-index/_bulk?refresh=true
{ "index": { "_id": "1" } }
{ "product-vector": [230.0, 300.33, -34.8988, 15.555, -200.0], "price": 1599 }
{ "index": { "_id": "2" } }
{ "product-vector": [-0.5, 100.0, -13.0, 14.8, -156.0], "price": 799 }
{ "index": { "_id": "3" } }
{ "product-vector": [0.5, 111.3, -13.0, 14.8, -156.0], "price": 1099 }
...
Use the search API to run a
script_score
query containing a vector function.To limit the number of matched documents passed to the vector function, we recommend you specify a filter query in the
script_score.query
parameter. If needed, you can use a match_all query in this parameter to match all documents. However, matching all documents can significantly increase search latency.resp = client.search(
index="product-index",
query={
"script_score": {
"query": {
"bool": {
"filter": {
"range": {
"price": {
"gte": 1000
}
}
}
}
},
"script": {
"source": "cosineSimilarity(params.queryVector, 'product-vector') + 1.0",
"params": {
"queryVector": [
-0.5,
90,
-10,
14.8,
-156
]
}
}
}
},
)
print(resp)
response = client.search(
index: 'product-index',
body: {
query: {
script_score: {
query: {
bool: {
filter: {
range: {
price: {
gte: 1000
}
}
}
}
},
script: {
source: "cosineSimilarity(params.queryVector, 'product-vector') + 1.0",
params: {
"queryVector": [
-0.5,
90,
-10,
14.8,
-156
]
}
}
}
}
}
)
puts response
const response = await client.search({
index: "product-index",
query: {
script_score: {
query: {
bool: {
filter: {
range: {
price: {
gte: 1000,
},
},
},
},
},
script: {
source: "cosineSimilarity(params.queryVector, 'product-vector') + 1.0",
params: {
queryVector: [-0.5, 90, -10, 14.8, -156],
},
},
},
},
});
console.log(response);
POST product-index/_search
{
"query": {
"script_score": {
"query" : {
"bool" : {
"filter" : {
"range" : {
"price" : {
"gte": 1000
}
}
}
}
},
"script": {
"source": "cosineSimilarity(params.queryVector, 'product-vector') + 1.0",
"params": {
"queryVector": [-0.5, 90.0, -10, 14.8, -156.0]
}
}
}
}
}
Oversampling and rescoring for quantized vectors
All forms of quantization will result in some accuracy loss and as the quantization level increases the accuracy loss will also increase. Generally, we have found that: - int8
requires minimal if any rescoring - int4
requires some rescoring for higher accuracy and larger recall scenarios. Generally, oversampling by 1.5x-2x recovers most of the accuracy loss. - bbq
requires rescoring except on exceptionally large indices or models specifically designed for quantization. We have found that between 3x-5x oversampling is generally sufficient. But for fewer dimensions or vectors that do not quantize well, higher oversampling may be required.
There are two main ways to oversample and rescore. The first is to utilize the rescore section in the _search
request.
Here is an example using the top level knn
search with oversampling and using rescore
to rerank the results:
resp = client.search(
index="my-index",
size=10,
knn={
"query_vector": [
0.04283529,
0.85670587,
-0.51402352,
0
],
"field": "my_int4_vector",
"k": 20,
"num_candidates": 50
},
rescore={
"window_size": 20,
"query": {
"rescore_query": {
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "(dotProduct(params.queryVector, 'my_int4_vector') + 1.0)",
"params": {
"queryVector": [
0.04283529,
0.85670587,
-0.51402352,
0
]
}
}
}
},
"query_weight": 0,
"rescore_query_weight": 1
}
},
)
print(resp)
const response = await client.search({
index: "my-index",
size: 10,
knn: {
query_vector: [0.04283529, 0.85670587, -0.51402352, 0],
field: "my_int4_vector",
k: 20,
num_candidates: 50,
},
rescore: {
window_size: 20,
query: {
rescore_query: {
script_score: {
query: {
match_all: {},
},
script: {
source: "(dotProduct(params.queryVector, 'my_int4_vector') + 1.0)",
params: {
queryVector: [0.04283529, 0.85670587, -0.51402352, 0],
},
},
},
},
query_weight: 0,
rescore_query_weight: 1,
},
},
});
console.log(response);
POST /my-index/_search
{
"size": 10,
"knn": {
"query_vector": [0.04283529, 0.85670587, -0.51402352, 0],
"field": "my_int4_vector",
"k": 20,
"num_candidates": 50
},
"rescore": {
"window_size": 20,
"query": {
"rescore_query": {
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "(dotProduct(params.queryVector, 'my_int4_vector') + 1.0)",
"params": {
"queryVector": [0.04283529, 0.85670587, -0.51402352, 0]
}
}
}
},
"query_weight": 0,
"rescore_query_weight": 1
}
}
}
The number of results to return, note its only 10 and we will oversample by 2x, gathering 20 nearest neighbors. | |
The number of results to return from the KNN search. This will do an approximate KNN search with 50 candidates per HNSW graph and use the quantized vectors, returning the 20 most similar vectors according to the quantized score. Additionally, since this is the top-level | |
The number of results to rescore, if you want to rescore all results, set this to the same value as | |
The script to rescore the results. Script score will interact directly with the originally provided float32 vector. | |
The weight of the original query, here we simply throw away the original score | |
The weight of the rescore query, here we only use the rescore query |
The second way is to score per shard with the knn query and script_score query. Generally, this means that there will be more rescoring per shard, but this can increase overall recall at the cost of compute.
resp = client.search(
index="my-index",
size=10,
query={
"script_score": {
"query": {
"knn": {
"query_vector": [
0.04283529,
0.85670587,
-0.51402352,
0
],
"field": "my_int4_vector",
"num_candidates": 20
}
},
"script": {
"source": "(dotProduct(params.queryVector, 'my_int4_vector') + 1.0)",
"params": {
"queryVector": [
0.04283529,
0.85670587,
-0.51402352,
0
]
}
}
}
},
)
print(resp)
const response = await client.search({
index: "my-index",
size: 10,
query: {
script_score: {
query: {
knn: {
query_vector: [0.04283529, 0.85670587, -0.51402352, 0],
field: "my_int4_vector",
num_candidates: 20,
},
},
script: {
source: "(dotProduct(params.queryVector, 'my_int4_vector') + 1.0)",
params: {
queryVector: [0.04283529, 0.85670587, -0.51402352, 0],
},
},
},
},
});
console.log(response);
POST /my-index/_search
{
"size": 10,
"query": {
"script_score": {
"query": {
"knn": {
"query_vector": [0.04283529, 0.85670587, -0.51402352, 0],
"field": "my_int4_vector",
"num_candidates": 20
}
},
"script": {
"source": "(dotProduct(params.queryVector, 'my_int4_vector') + 1.0)",
"params": {
"queryVector": [0.04283529, 0.85670587, -0.51402352, 0]
}
}
}
}
}
The number of results to return | |
The | |
The number of candidates to use for the initial approximate | |
The script to score the results. Script score will interact directly with the originally provided float32 vector. |