term_vector
term_vector
Term vectors contain information about the terms produced by the analysis process, including:
- a list of terms.
- the position (or order) of each term.
- the start and end character offsets mapping the term to its origin in the original string.
- payloads (if they are available) — user-defined binary data associated with each term position.
These term vectors can be stored so that they can be retrieved for a particular document.
The term_vector
setting accepts:
| No term vectors are stored. (default) |
| Just the terms in the field are stored. |
| Terms and positions are stored. |
| Terms and character offsets are stored. |
| Terms, positions, and character offsets are stored. |
| Terms, positions, and payloads are stored. |
| Terms, positions, offsets and payloads are stored. |
The fast vector highlighter requires with_positions_offsets
. The term vectors API can retrieve whatever is stored.
Setting with_positions_offsets
will double the size of a field’s index.
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"text": {
"type": "text",
"term_vector": "with_positions_offsets"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"text": "Quick brown fox"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"match": {
"text": "brown fox"
}
},
highlight={
"fields": {
"text": {}
}
},
)
print(resp2)
response = client.indices.create(
index: 'my-index-000001',
body: {
mappings: {
properties: {
text: {
type: 'text',
term_vector: 'with_positions_offsets'
}
}
}
}
)
puts response
response = client.index(
index: 'my-index-000001',
id: 1,
body: {
text: 'Quick brown fox'
}
)
puts response
response = client.search(
index: 'my-index-000001',
body: {
query: {
match: {
text: 'brown fox'
}
},
highlight: {
fields: {
text: {}
}
}
}
)
puts response
const response = await client.indices.create({
index: "my-index-000001",
mappings: {
properties: {
text: {
type: "text",
term_vector: "with_positions_offsets",
},
},
},
});
console.log(response);
const response1 = await client.index({
index: "my-index-000001",
id: 1,
document: {
text: "Quick brown fox",
},
});
console.log(response1);
const response2 = await client.search({
index: "my-index-000001",
query: {
match: {
text: "brown fox",
},
},
highlight: {
fields: {
text: {},
},
},
});
console.log(response2);
PUT my-index-000001
{
"mappings": {
"properties": {
"text": {
"type": "text",
"term_vector": "with_positions_offsets"
}
}
}
}
PUT my-index-000001/_doc/1
{
"text": "Quick brown fox"
}
GET my-index-000001/_search
{
"query": {
"match": {
"text": "brown fox"
}
},
"highlight": {
"fields": {
"text": {}
}
}
}
The fast vector highlighter will be used by default for the |