Update model snapshots API
Update model snapshots API
New API reference
For the most up-to-date API details, refer to Machine learning anomaly detection APIs.
Updates certain properties of a snapshot.
Request
POST _ml/anomaly_detectors/<job_id>/model_snapshots/<snapshot_id>/_update
Prerequisites
Requires the manage_ml
cluster privilege. This privilege is included in the machine_learning_admin
built-in role.
Path parameters
<job_id>
(Required, string) Identifier for the anomaly detection job.
<snapshot_id>
(Required, string) Identifier for the model snapshot.
Request body
The following properties can be updated after the model snapshot is created:
description
(Optional, string) A description of the model snapshot.
retain
(Optional, Boolean) If true
, this snapshot will not be deleted during automatic cleanup of snapshots older than model_snapshot_retention_days
. However, this snapshot will be deleted when the job is deleted. The default value is false
.
Examples
resp = client.ml.update_model_snapshot(
job_id="it_ops_new_logs",
snapshot_id="1491852978",
description="Snapshot 1",
retain=True,
)
print(resp)
response = client.ml.update_model_snapshot(
job_id: 'it_ops_new_logs',
snapshot_id: 1_491_852_978,
body: {
description: 'Snapshot 1',
retain: true
}
)
puts response
const response = await client.ml.updateModelSnapshot({
job_id: "it_ops_new_logs",
snapshot_id: 1491852978,
description: "Snapshot 1",
retain: true,
});
console.log(response);
POST
_ml/anomaly_detectors/it_ops_new_logs/model_snapshots/1491852978/_update
{
"description": "Snapshot 1",
"retain": true
}
When the snapshot is updated, you receive the following results:
{
"acknowledged": true,
"model": {
"job_id": "it_ops_new_logs",
"timestamp": 1491852978000,
"description": "Snapshot 1",
...
"retain": true
}
}