Set up a time series data stream (TSDS)
Set up a time series data stream (TSDS)
To set up a time series data stream (TSDS), follow these steps:
- Check the prerequisites.
- Create an index lifecycle policy.
- Create an index template.
- Create the TSDS.
- Secure the TSDS.
Prerequisites
- Before you create a TSDS, you should be familiar with data streams and TSDS concepts.
To follow this tutorial, you must have the following permissions:
- Cluster privileges:
manage_ilm
andmanage_index_templates
. - Index privileges:
create_doc
andcreate_index
for any TSDS you create or convert. To roll over a TSDS, you must have themanage
privilege.
- Cluster privileges:
Create an index lifecycle policy
While optional, we recommend using ILM to automate the management of your TSDS’s backing indices. ILM requires an index lifecycle policy.
We recommend you specify a max_age
criteria for the rollover
action in the policy. This ensures the @timestamp ranges for the TSDS’s backing indices are consistent. For example, setting a max_age
of 1d
for the rollover
action ensures your backing indices consistently contain one day’s worth of data.
resp = client.ilm.put_lifecycle(
name="my-weather-sensor-lifecycle-policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_age": "1d",
"max_primary_shard_size": "50gb"
}
}
},
"warm": {
"min_age": "30d",
"actions": {
"shrink": {
"number_of_shards": 1
},
"forcemerge": {
"max_num_segments": 1
}
}
},
"cold": {
"min_age": "60d",
"actions": {
"searchable_snapshot": {
"snapshot_repository": "found-snapshots"
}
}
},
"frozen": {
"min_age": "90d",
"actions": {
"searchable_snapshot": {
"snapshot_repository": "found-snapshots"
}
}
},
"delete": {
"min_age": "735d",
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
const response = await client.ilm.putLifecycle({
name: "my-weather-sensor-lifecycle-policy",
policy: {
phases: {
hot: {
actions: {
rollover: {
max_age: "1d",
max_primary_shard_size: "50gb",
},
},
},
warm: {
min_age: "30d",
actions: {
shrink: {
number_of_shards: 1,
},
forcemerge: {
max_num_segments: 1,
},
},
},
cold: {
min_age: "60d",
actions: {
searchable_snapshot: {
snapshot_repository: "found-snapshots",
},
},
},
frozen: {
min_age: "90d",
actions: {
searchable_snapshot: {
snapshot_repository: "found-snapshots",
},
},
},
delete: {
min_age: "735d",
actions: {
delete: {},
},
},
},
},
});
console.log(response);
PUT _ilm/policy/my-weather-sensor-lifecycle-policy
{
"policy": {
"phases": {
"hot": {
"actions": {
"rollover": {
"max_age": "1d",
"max_primary_shard_size": "50gb"
}
}
},
"warm": {
"min_age": "30d",
"actions": {
"shrink": {
"number_of_shards": 1
},
"forcemerge": {
"max_num_segments": 1
}
}
},
"cold": {
"min_age": "60d",
"actions": {
"searchable_snapshot": {
"snapshot_repository": "found-snapshots"
}
}
},
"frozen": {
"min_age": "90d",
"actions": {
"searchable_snapshot": {
"snapshot_repository": "found-snapshots"
}
}
},
"delete": {
"min_age": "735d",
"actions": {
"delete": {}
}
}
}
}
}
Create an index template
To setup a TSDS create an index template with the following details:
- One or more index patterns that match the TSDS’s name. We recommend using our data stream naming scheme.
- Enable data streams.
Specify a mapping that defines your dimensions and metrics:
- One or more dimension fields with a
time_series_dimension
value oftrue
. Alternatively, one or more pass-through fields configured as dimension containers, provided that they will contain at least one sub-field (mapped statically or dynamically). - One or more metric fields, marked using the
time_series_metric
mapping parameter. - Optional: A
date
ordate_nanos
mapping for the@timestamp
field. If you don’t specify a mapping, Elasticsearch maps@timestamp
as adate
field with default options.
- One or more dimension fields with a
Define index settings:
- Set
index.mode
setting totime_series
. - Your lifecycle policy in the
index.lifecycle.name
index setting. - Optional: Other index settings, such as index.number_of_replicas, for your TSDS’s backing indices.
- Set
A priority higher than
200
to avoid collisions with built-in templates. See Avoid index pattern collisions.- Optional: Component templates containing your mappings and other index settings.
resp = client.indices.put_index_template(
name="my-weather-sensor-index-template",
index_patterns=[
"metrics-weather_sensors-*"
],
data_stream={},
template={
"settings": {
"index.mode": "time_series",
"index.lifecycle.name": "my-lifecycle-policy"
},
"mappings": {
"properties": {
"sensor_id": {
"type": "keyword",
"time_series_dimension": True
},
"location": {
"type": "keyword",
"time_series_dimension": True
},
"temperature": {
"type": "half_float",
"time_series_metric": "gauge"
},
"humidity": {
"type": "half_float",
"time_series_metric": "gauge"
},
"@timestamp": {
"type": "date"
}
}
}
},
priority=500,
meta={
"description": "Template for my weather sensor data"
},
)
print(resp)
response = client.indices.put_index_template(
name: 'my-weather-sensor-index-template',
body: {
index_patterns: [
'metrics-weather_sensors-*'
],
data_stream: {},
template: {
settings: {
'index.mode' => 'time_series',
'index.lifecycle.name' => 'my-lifecycle-policy'
},
mappings: {
properties: {
sensor_id: {
type: 'keyword',
time_series_dimension: true
},
location: {
type: 'keyword',
time_series_dimension: true
},
temperature: {
type: 'half_float',
time_series_metric: 'gauge'
},
humidity: {
type: 'half_float',
time_series_metric: 'gauge'
},
"@timestamp": {
type: 'date'
}
}
}
},
priority: 500,
_meta: {
description: 'Template for my weather sensor data'
}
}
)
puts response
const response = await client.indices.putIndexTemplate({
name: "my-weather-sensor-index-template",
index_patterns: ["metrics-weather_sensors-*"],
data_stream: {},
template: {
settings: {
"index.mode": "time_series",
"index.lifecycle.name": "my-lifecycle-policy",
},
mappings: {
properties: {
sensor_id: {
type: "keyword",
time_series_dimension: true,
},
location: {
type: "keyword",
time_series_dimension: true,
},
temperature: {
type: "half_float",
time_series_metric: "gauge",
},
humidity: {
type: "half_float",
time_series_metric: "gauge",
},
"@timestamp": {
type: "date",
},
},
},
},
priority: 500,
_meta: {
description: "Template for my weather sensor data",
},
});
console.log(response);
PUT _index_template/my-weather-sensor-index-template
{
"index_patterns": ["metrics-weather_sensors-*"],
"data_stream": { },
"template": {
"settings": {
"index.mode": "time_series",
"index.lifecycle.name": "my-lifecycle-policy"
},
"mappings": {
"properties": {
"sensor_id": {
"type": "keyword",
"time_series_dimension": true
},
"location": {
"type": "keyword",
"time_series_dimension": true
},
"temperature": {
"type": "half_float",
"time_series_metric": "gauge"
},
"humidity": {
"type": "half_float",
"time_series_metric": "gauge"
},
"@timestamp": {
"type": "date"
}
}
}
},
"priority": 500,
"_meta": {
"description": "Template for my weather sensor data"
}
}
Create the TSDS
Indexing requests add documents to a TSDS. Documents in a TSDS must include:
- A
@timestamp
field - One or more dimension fields. At least one dimension must match the
index.routing_path
index setting, if specified. If not specified explicitly,index.routing_path
is set automatically to whichever mappings havetime_series_dimension
set totrue
.
To automatically create your TSDS, submit an indexing request that targets the TSDS’s name. This name must match one of your index template’s index patterns.
To test the following example, update the timestamps to within three hours of your current time. Data added to a TSDS must always fall within an accepted time range.
resp = client.bulk(
index="metrics-weather_sensors-dev",
operations=[
{
"create": {}
},
{
"@timestamp": "2099-05-06T16:21:15.000Z",
"sensor_id": "HAL-000001",
"location": "plains",
"temperature": 26.7,
"humidity": 49.9
},
{
"create": {}
},
{
"@timestamp": "2099-05-06T16:25:42.000Z",
"sensor_id": "SYKENET-000001",
"location": "swamp",
"temperature": 32.4,
"humidity": 88.9
}
],
)
print(resp)
resp1 = client.index(
index="metrics-weather_sensors-dev",
document={
"@timestamp": "2099-05-06T16:21:15.000Z",
"sensor_id": "SYKENET-000001",
"location": "swamp",
"temperature": 32.4,
"humidity": 88.9
},
)
print(resp1)
const response = await client.bulk({
index: "metrics-weather_sensors-dev",
operations: [
{
create: {},
},
{
"@timestamp": "2099-05-06T16:21:15.000Z",
sensor_id: "HAL-000001",
location: "plains",
temperature: 26.7,
humidity: 49.9,
},
{
create: {},
},
{
"@timestamp": "2099-05-06T16:25:42.000Z",
sensor_id: "SYKENET-000001",
location: "swamp",
temperature: 32.4,
humidity: 88.9,
},
],
});
console.log(response);
const response1 = await client.index({
index: "metrics-weather_sensors-dev",
document: {
"@timestamp": "2099-05-06T16:21:15.000Z",
sensor_id: "SYKENET-000001",
location: "swamp",
temperature: 32.4,
humidity: 88.9,
},
});
console.log(response1);
PUT metrics-weather_sensors-dev/_bulk
{ "create":{ } }
{ "@timestamp": "2099-05-06T16:21:15.000Z", "sensor_id": "HAL-000001", "location": "plains", "temperature": 26.7,"humidity": 49.9 }
{ "create":{ } }
{ "@timestamp": "2099-05-06T16:25:42.000Z", "sensor_id": "SYKENET-000001", "location": "swamp", "temperature": 32.4, "humidity": 88.9 }
POST metrics-weather_sensors-dev/_doc
{
"@timestamp": "2099-05-06T16:21:15.000Z",
"sensor_id": "SYKENET-000001",
"location": "swamp",
"temperature": 32.4,
"humidity": 88.9
}
You can also manually create the TSDS using the create data stream API. The TSDS’s name must still match one of your template’s index patterns.
resp = client.indices.create_data_stream(
name="metrics-weather_sensors-dev",
)
print(resp)
response = client.indices.create_data_stream(
name: 'metrics-weather_sensors-dev'
)
puts response
const response = await client.indices.createDataStream({
name: "metrics-weather_sensors-dev",
});
console.log(response);
PUT _data_stream/metrics-weather_sensors-dev
Secure the TSDS
Use index privileges to control access to a TSDS. Granting privileges on a TSDS grants the same privileges on its backing indices.
For an example, refer to Data stream privileges.
Convert an existing data stream to a TSDS
You can also use the above steps to convert an existing regular data stream to a TSDS. In this case, you’ll want to:
- Edit your existing index lifecycle policy, component templates, and index templates instead of creating new ones.
Instead of creating the TSDS, manually roll over its write index. This ensures the current write index and any new backing indices have an index.mode of time_series.
You can manually roll over the write index using the rollover API.
resp = client.indices.rollover(
alias="metrics-weather_sensors-dev",
)
print(resp)
response = client.indices.rollover(
alias: 'metrics-weather_sensors-dev'
)
puts response
const response = await client.indices.rollover({
alias: "metrics-weather_sensors-dev",
});
console.log(response);
POST metrics-weather_sensors-dev/_rollover
A note about component templates and index.mode setting
Configuring a TSDS via an index template that uses component templates is a bit more complicated. Typically with component templates mappings and settings get scattered across multiple component templates. If the index.routing_path
is defined, the fields it references need to be defined in the same component template with the time_series_dimension
attribute enabled.
The reasons for this is that each component template needs to be valid on its own. When configuring the index.mode
setting in an index template, the index.routing_path
setting is configured automatically. It is derived from the field mappings with time_series_dimension
attribute enabled.
What’s next?
Now that you’ve set up your TSDS, you can manage and use it like a regular data stream. For more information, refer to: