Simulate pipeline API
Simulate pipeline API
New API reference
For the most up-to-date API details, refer to Ingest APIs.
Executes an ingest pipeline against a set of provided documents.
resp = client.ingest.simulate(
id="my-pipeline-id",
docs=[
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
],
)
print(resp)
const response = await client.ingest.simulate({
id: "my-pipeline-id",
docs: [
{
_index: "index",
_id: "id",
_source: {
foo: "bar",
},
},
{
_index: "index",
_id: "id",
_source: {
foo: "rab",
},
},
],
});
console.log(response);
POST /_ingest/pipeline/my-pipeline-id/_simulate
{
"docs": [
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
]
}
Request
POST /_ingest/pipeline/<pipeline>/_simulate
GET /_ingest/pipeline/<pipeline>/_simulate
POST /_ingest/pipeline/_simulate
GET /_ingest/pipeline/_simulate
Prerequisites
- If the Elasticsearch security features are enabled, you must have the
read_pipeline
,manage_pipeline
,manage_ingest_pipelines
, ormanage
cluster privilege to use this API.
Description
The simulate pipeline API executes a specific pipeline against a set of documents provided in the body of the request.
You can either specify an existing pipeline to execute against the provided documents or supply a pipeline definition in the body of the request.
Path parameters
<pipeline>
(Required*, string) Pipeline to test. If you don’t specify a pipeline
in the request body, this parameter is required.
Query parameters
verbose
(Optional, Boolean) If true
, the response includes output data for each processor in the executed pipeline.
Request body
pipeline
(Required*, object) Pipeline to test. If you don’t specify the <pipeline>
request path parameter, this parameter is required. If you specify both this and the request path parameter, the API only uses the request path parameter.
Properties of pipeline
description
(Optional, string) Description of the ingest pipeline.
on_failure
(Optional, array of processor objects) Processors to run immediately after a processor failure.
Each processor supports a processor-level
on_failure
value. If a processor without anon_failure
value fails, Elasticsearch uses this pipeline-level parameter as a fallback. The processors in this parameter run sequentially in the order specified. Elasticsearch will not attempt to run the pipeline’s remaining processors.processors
(Required, array of processor objects) Processors used to perform transformations on documents before indexing. Processors run sequentially in the order specified.
version
(Optional, integer) Version number used by external systems to track ingest pipelines.
See the if_version parameter above for how the version attribute is used.
_meta
(Optional, object) Optional metadata about the ingest pipeline. May have any contents. This map is not automatically generated by Elasticsearch.
deprecated
(Optional, boolean) Marks this ingest pipeline as deprecated. When a deprecated ingest pipeline is referenced as the default or final pipeline when creating or updating a non-deprecated index template, Elasticsearch will emit a deprecation warning.
docs
(Required, array of objects) Sample documents to test in the pipeline.
Properties of docs
objects
_id
(Optional, string) Unique identifier for the document. This ID must be unique within the
_index
._index
(Optional, string) Name of the index containing the document.
_routing
(Optional, string) Value used to send the document to a specific primary shard. See the _routing field.
_source
(Required, object) JSON body for the document.
Examples
Specify a pipeline as a path parameter
resp = client.ingest.simulate(
id="my-pipeline-id",
docs=[
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
],
)
print(resp)
const response = await client.ingest.simulate({
id: "my-pipeline-id",
docs: [
{
_index: "index",
_id: "id",
_source: {
foo: "bar",
},
},
{
_index: "index",
_id: "id",
_source: {
foo: "rab",
},
},
],
});
console.log(response);
POST /_ingest/pipeline/my-pipeline-id/_simulate
{
"docs": [
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
]
}
The API returns the following response:
{
"docs": [
{
"doc": {
"_id": "id",
"_index": "index",
"_version": "-3",
"_source": {
"field2": "_value",
"foo": "bar"
},
"_ingest": {
"timestamp": "2017-05-04T22:30:03.187Z"
}
}
},
{
"doc": {
"_id": "id",
"_index": "index",
"_version": "-3",
"_source": {
"field2": "_value",
"foo": "rab"
},
"_ingest": {
"timestamp": "2017-05-04T22:30:03.188Z"
}
}
}
]
}
Specify a pipeline in the request body
resp = client.ingest.simulate(
pipeline={
"description": "_description",
"processors": [
{
"set": {
"field": "field2",
"value": "_value"
}
}
]
},
docs=[
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
],
)
print(resp)
response = client.ingest.simulate(
body: {
pipeline: {
description: '_description',
processors: [
{
set: {
field: 'field2',
value: '_value'
}
}
]
},
docs: [
{
_index: 'index',
_id: 'id',
_source: {
foo: 'bar'
}
},
{
_index: 'index',
_id: 'id',
_source: {
foo: 'rab'
}
}
]
}
)
puts response
const response = await client.ingest.simulate({
pipeline: {
description: "_description",
processors: [
{
set: {
field: "field2",
value: "_value",
},
},
],
},
docs: [
{
_index: "index",
_id: "id",
_source: {
foo: "bar",
},
},
{
_index: "index",
_id: "id",
_source: {
foo: "rab",
},
},
],
});
console.log(response);
POST /_ingest/pipeline/_simulate
{
"pipeline" :
{
"description": "_description",
"processors": [
{
"set" : {
"field" : "field2",
"value" : "_value"
}
}
]
},
"docs": [
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
]
}
The API returns the following response:
{
"docs": [
{
"doc": {
"_id": "id",
"_index": "index",
"_version": "-3",
"_source": {
"field2": "_value",
"foo": "bar"
},
"_ingest": {
"timestamp": "2017-05-04T22:30:03.187Z"
}
}
},
{
"doc": {
"_id": "id",
"_index": "index",
"_version": "-3",
"_source": {
"field2": "_value",
"foo": "rab"
},
"_ingest": {
"timestamp": "2017-05-04T22:30:03.188Z"
}
}
}
]
}
View verbose results
You can use the simulate pipeline API to see how each processor affects the ingest document as it passes through the pipeline. To see the intermediate results of each processor in the simulate request, you can add the verbose
parameter to the request.
resp = client.ingest.simulate(
verbose=True,
pipeline={
"description": "_description",
"processors": [
{
"set": {
"field": "field2",
"value": "_value2"
}
},
{
"set": {
"field": "field3",
"value": "_value3"
}
}
]
},
docs=[
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
],
)
print(resp)
response = client.ingest.simulate(
verbose: true,
body: {
pipeline: {
description: '_description',
processors: [
{
set: {
field: 'field2',
value: '_value2'
}
},
{
set: {
field: 'field3',
value: '_value3'
}
}
]
},
docs: [
{
_index: 'index',
_id: 'id',
_source: {
foo: 'bar'
}
},
{
_index: 'index',
_id: 'id',
_source: {
foo: 'rab'
}
}
]
}
)
puts response
const response = await client.ingest.simulate({
verbose: "true",
pipeline: {
description: "_description",
processors: [
{
set: {
field: "field2",
value: "_value2",
},
},
{
set: {
field: "field3",
value: "_value3",
},
},
],
},
docs: [
{
_index: "index",
_id: "id",
_source: {
foo: "bar",
},
},
{
_index: "index",
_id: "id",
_source: {
foo: "rab",
},
},
],
});
console.log(response);
POST /_ingest/pipeline/_simulate?verbose=true
{
"pipeline" :
{
"description": "_description",
"processors": [
{
"set" : {
"field" : "field2",
"value" : "_value2"
}
},
{
"set" : {
"field" : "field3",
"value" : "_value3"
}
}
]
},
"docs": [
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
]
}
The API returns the following response:
{
"docs" : [
{
"processor_results" : [
{
"processor_type" : "set",
"status" : "success",
"doc" : {
"_index" : "index",
"_id" : "id",
"_version": "-3",
"_source" : {
"field2" : "_value2",
"foo" : "bar"
},
"_ingest" : {
"pipeline" : "_simulate_pipeline",
"timestamp" : "2020-07-30T01:21:24.251836Z"
}
}
},
{
"processor_type" : "set",
"status" : "success",
"doc" : {
"_index" : "index",
"_id" : "id",
"_version": "-3",
"_source" : {
"field3" : "_value3",
"field2" : "_value2",
"foo" : "bar"
},
"_ingest" : {
"pipeline" : "_simulate_pipeline",
"timestamp" : "2020-07-30T01:21:24.251836Z"
}
}
}
]
},
{
"processor_results" : [
{
"processor_type" : "set",
"status" : "success",
"doc" : {
"_index" : "index",
"_id" : "id",
"_version": "-3",
"_source" : {
"field2" : "_value2",
"foo" : "rab"
},
"_ingest" : {
"pipeline" : "_simulate_pipeline",
"timestamp" : "2020-07-30T01:21:24.251863Z"
}
}
},
{
"processor_type" : "set",
"status" : "success",
"doc" : {
"_index" : "index",
"_id" : "id",
"_version": "-3",
"_source" : {
"field3" : "_value3",
"field2" : "_value2",
"foo" : "rab"
},
"_ingest" : {
"pipeline" : "_simulate_pipeline",
"timestamp" : "2020-07-30T01:21:24.251863Z"
}
}
}
]
}
]
}