Ranking evaluation

Introduced 1.0

The rank eval endpoint allows you to evaluate the quality of ranked search results.

Path and HTTP methods

  1. GET <index_name>/_rank_eval
  2. POST <index_name>/_rank_eval

Query parameters

Query parameters are optional.

ParameterData typeDescription
ignore_unavailableBooleanDefaults to false. When set to false the response body will return an error if an index is closed or missing.
allow_no_indicesBooleanDefaults to true. When set to false the response body will return an error if a wildcard expression points to indexes that are closed or missing.
expand_wildcardsStringExpand wildcard expressions for indexes that are open, closed, hidden, none, or all.
search_typeStringSet search type to either query_then_fetch or dfs_query_then_fetch.

Request body fields

The request body must contain at least one parameter.

Field TypeDescription
idDocument or template ID.
requestsSet multiple search requests within the request field section.
ratingsDocument relevance score.
kThe number of documents returned per query. Default is set to 10.
relevant_rating_thresholdThe threshold at which documents are considered relevant. Default is set to 1.
normalizeDiscounted cumulative gain will be calculated when set to true.
maximum_relevanceSets the maximum relevance score when using the expected reciprocal rank metric.
ignore_unlabeledDefaults to false. Unlabeled documents are ignored when set to true.
template_idTemplate ID.
paramsParameters used in the template.

Example request

  1. GET shakespeare/_rank_eval
  2. {
  3. "requests": [
  4. {
  5. "id": "books_query",
  6. "request": {
  7. "query": { "match": { "text": "thou" } }
  8. },
  9. "ratings": [
  10. { "_index": "shakespeare", "_id": "80", "rating": 0 },
  11. { "_index": "shakespeare", "_id": "115", "rating": 1 },
  12. { "_index": "shakespeare", "_id": "117", "rating": 2 }
  13. ]
  14. },
  15. {
  16. "id": "words_query",
  17. "request": {
  18. "query": { "match": { "text": "art" } }
  19. },
  20. "ratings": [
  21. { "_index": "shakespeare", "_id": "115", "rating": 2 }
  22. ]
  23. }
  24. ]
  25. }

copy

Example response

  1. {
  2. "rank_eval": {
  3. "metric_score": 0.7,
  4. "details": {
  5. "query_1": {
  6. "metric_score": 0.9,
  7. "unrated_docs": [
  8. {
  9. "_index": "shakespeare",
  10. "_id": "1234567"
  11. }, ...
  12. ],
  13. "hits": [
  14. {
  15. "hit": {
  16. "_index": "shakespeare",
  17. "_type": "page",
  18. "_id": "1234567",
  19. "_score": 5.123456789
  20. },
  21. "rating": 1
  22. }, ...
  23. ],
  24. "metric_details": {
  25. "precision": {
  26. "relevant_docs_retrieved": 3,
  27. "docs_retrieved": 6
  28. }
  29. }
  30. },
  31. "query_2": { [... ] }
  32. },
  33. "failures": { [... ] }
  34. }
  35. }