Keyword repeat token filter
The keyword_repeat
token filter emits the keyword version of a token into a token stream. This filter is typically used when you want to retain both the original token and its modified version after further token transformations, such as stemming or synonym expansion. The duplicated tokens allow the original, unchanged version of the token to remain in the final analysis alongside the modified versions.
The keyword_repeat
token filter should be placed before stemming filters. Stemming is not applied to every token, thus you may have duplicate tokens in the same position after stemming. To remove duplicate tokens, use the remove_duplicates
token filter after the stemmer.
Example
The following example request creates a new index named my_index
and configures an analyzer with a keyword_repeat
filter:
PUT /my_index
{
"settings": {
"analysis": {
"filter": {
"my_kstem": {
"type": "kstem"
},
"my_lowercase": {
"type": "lowercase"
}
},
"analyzer": {
"my_custom_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"my_lowercase",
"keyword_repeat",
"my_kstem"
]
}
}
}
}
}
copy
Generated tokens
Use the following request to examine the tokens generated using the analyzer:
POST /my_index/_analyze
{
"analyzer": "my_custom_analyzer",
"text": "Stopped quickly"
}
copy
The response contains the generated tokens:
{
"tokens": [
{
"token": "stopped",
"start_offset": 0,
"end_offset": 7,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "stop",
"start_offset": 0,
"end_offset": 7,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "quickly",
"start_offset": 8,
"end_offset": 15,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "quick",
"start_offset": 8,
"end_offset": 15,
"type": "<ALPHANUM>",
"position": 1
}
]
}
You can further examine the impact of the keyword_repeat
token filter by adding the following parameters to the _analyze
query:
POST /my_index/_analyze
{
"analyzer": "my_custom_analyzer",
"text": "Stopped quickly",
"explain": true,
"attributes": "keyword"
}
copy
The response includes detailed information, such as tokenization, filtering, and the application of specific token filters:
{
"detail": {
"custom_analyzer": true,
"charfilters": [],
"tokenizer": {
"name": "standard",
"tokens": [
{"token": "OpenSearch","start_offset": 0,"end_offset": 10,"type": "<ALPHANUM>","position": 0},
{"token": "helped","start_offset": 11,"end_offset": 17,"type": "<ALPHANUM>","position": 1},
{"token": "many","start_offset": 18,"end_offset": 22,"type": "<ALPHANUM>","position": 2},
{"token": "employers","start_offset": 23,"end_offset": 32,"type": "<ALPHANUM>","position": 3}
]
},
"tokenfilters": [
{
"name": "lowercase",
"tokens": [
{"token": "opensearch","start_offset": 0,"end_offset": 10,"type": "<ALPHANUM>","position": 0},
{"token": "helped","start_offset": 11,"end_offset": 17,"type": "<ALPHANUM>","position": 1},
{"token": "many","start_offset": 18,"end_offset": 22,"type": "<ALPHANUM>","position": 2},
{"token": "employers","start_offset": 23,"end_offset": 32,"type": "<ALPHANUM>","position": 3}
]
},
{
"name": "keyword_marker_filter",
"tokens": [
{"token": "opensearch","start_offset": 0,"end_offset": 10,"type": "<ALPHANUM>","position": 0,"keyword": true},
{"token": "helped","start_offset": 11,"end_offset": 17,"type": "<ALPHANUM>","position": 1,"keyword": false},
{"token": "many","start_offset": 18,"end_offset": 22,"type": "<ALPHANUM>","position": 2,"keyword": false},
{"token": "employers","start_offset": 23,"end_offset": 32,"type": "<ALPHANUM>","position": 3,"keyword": false}
]
},
{
"name": "kstem_filter",
"tokens": [
{"token": "opensearch","start_offset": 0,"end_offset": 10,"type": "<ALPHANUM>","position": 0,"keyword": true},
{"token": "help","start_offset": 11,"end_offset": 17,"type": "<ALPHANUM>","position": 1,"keyword": false},
{"token": "many","start_offset": 18,"end_offset": 22,"type": "<ALPHANUM>","position": 2,"keyword": false},
{"token": "employer","start_offset": 23,"end_offset": 32,"type": "<ALPHANUM>","position": 3,"keyword": false}
]
}
]
}
}