Query data with Flux

The following guides walk through both common and complex queries and use cases for Flux.

Example data variable

Many of the examples provided in the following guides use a data variable, which represents a basic query that filters data by measurement and field. data is defined as:

  1. data = from(bucket: "example-bucket")
  2. |> range(start: -1h)
  3. |> filter(fn: (r) => r._measurement == "example-measurement" and r._field == "example-field")

Flux query guides


Query fields and tags

Use filter() to query data based on fields, tags, or any other column value. filter() performs operations similar to the SELECT statement and the WHERE clause in InfluxQL and other SQL-like query languages.

  1. from(bucket: "example-bucket")
  2. |> range(start: -1h)
  3. |> filter(fn: (r) => r._measurement == "example-measurement" and r.tag == "example-tag")
  4. |> filter(fn: (r) => r._field == "example-field")

Read more


Group

Use group() to group data with common values in specific columns.

  1. data
  2. |> group(columns: ["host"], mode: "by")
Input:
_timehost_value
2020-01-01T00:01:00Zhost11.0
2020-01-01T00:01:00Zhost22.0
2020-01-01T00:02:00Zhost11.0
2020-01-01T00:02:00Zhost23.0
Output:
_timehost_value
2020-01-01T00:01:00Zhost11.0
2020-01-01T00:02:00Zhost11.0
_timehost_value
2020-01-01T00:01:00Zhost22.0
2020-01-01T00:02:00Zhost23.0

Read more


Sort and limit

Use sort() to order records within each table by specific columns and limit() to limit the number of records in output tables to a fixed number, n.

  1. data
  2. |> sort(columns: ["host", "_value"])
  3. |> limit(n: 4)
Input:
_timehost_value
2020-01-01T00:01:00ZA1.0
2020-01-01T00:02:00ZB1.2
2020-01-01T00:03:00ZA1.8
2020-01-01T00:04:00ZB0.9
2020-01-01T00:05:00ZB1.4
2020-01-01T00:06:00ZB2.0
Output:
_timehost_value
2020-01-01T00:03:00ZA1.8
2020-01-01T00:01:00ZA1.0
2020-01-01T00:06:00ZB2.0
2020-01-01T00:05:00ZB1.4

Read more


Window & aggregate

This guide walks through windowing and aggregating data with Flux and outlines how it shapes your data in the process.

  1. data
  2. |> aggregateWindow(every: 20m, fn: mean)
Input:
_time_value
2020-01-01T00:00:00Z250
2020-01-01T00:04:00Z160
2020-01-01T00:12:00Z150
2020-01-01T00:19:00Z220
2020-01-01T00:32:00Z200
2020-01-01T00:51:00Z290
2020-01-01T01:00:00Z340
Output:
_time_value
2020-01-01T00:20:00Z195
2020-01-01T00:40:00Z200
2020-01-01T01:00:00Z290
2020-01-01T01:20:00Z340

Read more


Explore your schema

Flux provides functions that let you explore the structure and schema of your data stored in InfluxDB.

  1. import "influxdata/influxdb/schema"
  2. // List buckets
  3. buckets()
  4. // List measurements
  5. schema.measurements(bucket: "example-bucket")
  6. // List field keys
  7. schema.fieldKeys(bucket: "example-bucket")
  8. // List tag keys
  9. schema.tagKeys(bucket: "example-bucket")
  10. // List tag values
  11. schema.tagValues(bucket: "example-bucket", tag: "example-tag")

Read more


Transform data with math

Use map() to remap column values and apply mathematic operations.

  1. data
  2. |> map(fn: (r) => ({ r with _value: r._value * r._value }))
Input:
_time_value
2020-01-01T00:01:00Z2
2020-01-01T00:02:00Z4
2020-01-01T00:03:00Z3
2020-01-01T00:04:00Z5
Output:
_time_value
2020-01-01T00:01:00Z4
2020-01-01T00:02:00Z16
2020-01-01T00:03:00Z9
2020-01-01T00:04:00Z25

Read more


Calculate percentages

Use pivot() or join() and the map() function to align operand values into rows and calculate a percentage.

  1. data
  2. |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
  3. |> map(
  4. fn: (r) => ({
  5. _time: r._time,
  6. _field: "used_percent",
  7. _value: float(v: r.used) / float(v: r.total) * 100.0,
  8. }),
  9. )
Input:
_time_field_value
2020-01-01T00:00:00Zused2.5
2020-01-01T00:00:10Zused3.1
2020-01-01T00:00:20Zused4.2
_time_field_value
2020-01-01T00:00:00Ztotal8.0
2020-01-01T00:00:10Ztotal8.0
2020-01-01T00:00:20Ztotal8.0
Output:
_time_field_value
2020-01-01T00:00:00Zused_percent31.25
2020-01-01T00:00:10Zused_percent38.75
2020-01-01T00:00:20Zused_percent52.50

Read more


Increase

Use increase() to track increases across multiple columns in a table. This function is especially useful when tracking changes in counter values that wrap over time or periodically reset.

  1. data
  2. |> increase()
Input:
_time_value
2020-01-01T00:01:00Z1
2020-01-01T00:02:00Z2
2020-01-01T00:03:00Z8
2020-01-01T00:04:00Z10
2020-01-01T00:05:00Z0
2020-01-01T00:06:00Z4
Output:
_time_value
2020-01-01T00:02:00Z1
2020-01-01T00:03:00Z7
2020-01-01T00:04:00Z9
2020-01-01T00:05:00Z9
2020-01-01T00:06:00Z13

Read more


Moving Average

Use movingAverage() or timedMovingAverage() to return the moving average of data.

  1. data
  2. |> movingAverage(n: 3)
Input:
_time_value
2020-01-01T00:01:00Z1.0
2020-01-01T00:02:00Z1.2
2020-01-01T00:03:00Z1.8
2020-01-01T00:04:00Z0.9
2020-01-01T00:05:00Z1.4
2020-01-01T00:06:00Z2.0
Output:
_time_value
2020-01-01T00:03:00Z1.33
2020-01-01T00:04:00Z1.30
2020-01-01T00:05:00Z1.36
2020-01-01T00:06:00Z1.43
  1. data
  2. |> timedMovingAverage(every: 2m, period: 4m)
Input:
_time_value
2020-01-01T00:01:00Z1.0
2020-01-01T00:02:00Z1.2
2020-01-01T00:03:00Z1.8
2020-01-01T00:04:00Z0.9
2020-01-01T00:05:00Z1.4
2020-01-01T00:06:00Z2.0
Output:
_time_value
2020-01-01T00:02:00Z1.000
2020-01-01T00:04:00Z1.333
2020-01-01T00:06:00Z1.325
2020-01-01T00:06:00Z1.150

Read more


Rate

Use derivative() to calculate the rate of change between subsequent values or aggregate.rate() to calculate the average rate of change per window of time. If time between points varies, these functions normalize points to a common time interval making values easily comparable.

  1. data
  2. |> derivative(unit: 1m, nonNegative: true)
Input:
_time_value
2020-01-01T00:00:00Z250
2020-01-01T00:04:00Z160
2020-01-01T00:12:00Z150
2020-01-01T00:19:00Z220
2020-01-01T00:32:00Z200
2020-01-01T00:51:00Z290
2020-01-01T01:00:00Z340
Output:
_time_value
2020-01-01T00:04:00Z
2020-01-01T00:12:00Z
2020-01-01T00:19:00Z10.0
2020-01-01T00:32:00Z
2020-01-01T00:51:00Z4.74
2020-01-01T01:00:00Z5.56
  1. import "experimental/aggregate"
  2. data
  3. |> aggregate.rate(every: 20m, unit: 1m)
Input:
_time_value
2020-01-01T00:00:00Z250
2020-01-01T00:04:00Z160
2020-01-01T00:12:00Z150
2020-01-01T00:19:00Z220
2020-01-01T00:32:00Z200
2020-01-01T00:51:00Z290
2020-01-01T01:00:00Z340
Output:
_time_value
2020-01-01T00:20:00Z
2020-01-01T00:40:00Z10.0
2020-01-01T01:00:00Z4.74
2020-01-01T01:20:00Z5.56

Read more


Histograms

Use histogram() to create cumulative histograms with Flux.

  1. data
  2. |> histogram(
  3. column: "_value",
  4. upperBoundColumn: "le",
  5. countColumn: "_value",
  6. bins: [100.0, 200.0, 300.0, 400.0],
  7. )
Input:
_time_value
2020-01-01T00:00:00Z250.0
2020-01-01T00:01:00Z160.0
2020-01-01T00:02:00Z150.0
2020-01-01T00:03:00Z220.0
2020-01-01T00:04:00Z200.0
2020-01-01T00:05:00Z290.0
2020-01-01T01:00:00Z340.0
Output:
le_value
100.00.0
200.03.0
300.06.0
400.07.0

Read more


Fill

Use fill() function to replace null values.

  1. data
  2. |> fill(usePrevious: true)
Input:
_time_value
2020-01-01T00:01:00Znull
2020-01-01T00:02:00Z0.8
2020-01-01T00:03:00Znull
2020-01-01T00:04:00Znull
2020-01-01T00:05:00Z1.4
Output:
_time_value
2020-01-01T00:01:00Znull
2020-01-01T00:02:00Z0.8
2020-01-01T00:03:00Z0.8
2020-01-01T00:04:00Z0.8
2020-01-01T00:05:00Z1.4
  1. data
  2. |> fill(value: 0.0)
Input:
_time_value
2020-01-01T00:01:00Znull
2020-01-01T00:02:00Z0.8
2020-01-01T00:03:00Znull
2020-01-01T00:04:00Znull
2020-01-01T00:05:00Z1.4
Output:
_time_value
2020-01-01T00:01:00Z0.0
2020-01-01T00:02:00Z0.8
2020-01-01T00:03:00Z0.0
2020-01-01T00:04:00Z0.0
2020-01-01T00:05:00Z1.4

Read more


Median

Use median() to return a value representing the 0.5 quantile (50th percentile) or median of input data.

  1. data
  2. |> median()
Input:
_time_value
2020-01-01T00:01:00Z1.0
2020-01-01T00:02:00Z1.0
2020-01-01T00:03:00Z2.0
2020-01-01T00:04:00Z3.0
Output:
_value
1.5

Read more


Percentile & quantile

Use the quantile() function to return all values within the q quantile or percentile of input data.

  1. data
  2. |> quantile(q: 0.99, method: "estimate_tdigest")
Input:
_time_value
2020-01-01T00:01:00Z1.0
2020-01-01T00:02:00Z1.0
2020-01-01T00:03:00Z2.0
2020-01-01T00:04:00Z3.0
Output:
_value
3.0

Read more


Join

This guide walks through joining data with Flux and outlines how it shapes your data in the process.

  1. import "join"
  2. import "sql"
  3. left =
  4. from(bucket: "example-bucket-1")
  5. |> range(start: "-1h")
  6. |> filter(fn: (r) => r._measurement == "example-m")
  7. |> filter(fn: (r) => r._field == "example-f")
  8. |> drop(columns: ["_measurement", "_field"])
  9. right =
  10. sql.from(
  11. driverName: "postgres",
  12. dataSourceName: "postgresql://username:password@localhost:5432",
  13. query: "SELECT * FROM example_table",
  14. )
  15. join.inner(
  16. left: left |> group(),
  17. right: right,
  18. on: (l, r) => l.sensorID == r.ID,
  19. as: (l, r) => ({l with expired: r.expired}),
  20. )
  21. |> group(columns: ["_time", "_value"], mode: "except")
Input:
left
_timesensorID_value
2020-01-01T00:01:00Z12341
2020-01-01T00:02:00Z12342
2020-01-01T00:03:00Z12341
2020-01-01T00:04:00Z12343
_timesensorID_value
2020-01-01T00:01:00Z56782
2020-01-01T00:02:00Z56785
2020-01-01T00:03:00Z56781
2020-01-01T00:04:00Z56788
right
IDexpiredserviced
1234false2022-01-01
5678true2022-01-01
Output:
_timesensorID_valueexpired
2020-01-01T00:01:00Z12341false
2020-01-01T00:02:00Z12342false
2020-01-01T00:03:00Z12341false
2020-01-01T00:04:00Z12343false
_timesensorID_valueexpired
2020-01-01T00:01:00Z56782true
2020-01-01T00:02:00Z56785true
2020-01-01T00:03:00Z56781true
2020-01-01T00:04:00Z56788true

Read more


Cumulative sum

Use the cumulativeSum() function to calculate a running total of values.

  1. data
  2. |> cumulativeSum()
Input:
_time_value
2020-01-01T00:01:00Z1
2020-01-01T00:02:00Z2
2020-01-01T00:03:00Z1
2020-01-01T00:04:00Z3
Output:
_time_value
2020-01-01T00:01:00Z1
2020-01-01T00:02:00Z3
2020-01-01T00:03:00Z4
2020-01-01T00:04:00Z7

Read more


First and last

Use first() or last() to return the first or last point in an input table.

  1. data
  2. |> first()
Input:
_time_value
2020-01-01T00:01:00Z1.0
2020-01-01T00:02:00Z1.0
2020-01-01T00:03:00Z2.0
2020-01-01T00:04:00Z3.0
Output:
_time_value
2020-01-01T00:01:00Z1.0
  1. data
  2. |> last()
Input:
_time_value
2020-01-01T00:01:00Z1.0
2020-01-01T00:02:00Z1.0
2020-01-01T00:03:00Z2.0
2020-01-01T00:04:00Z3.0
Output:
_time_value
2020-01-01T00:04:00Z3.0

Read more


Exists

Use the Flux exists operator to check if a row record contains a column or if that column’s value is null.

Filter null values
  1. data
  2. |> filter(fn: (r) => exists r._value)

Read more


Custom functions

Create your own custom Flux functions to transform and operate on data.

  1. multByX = (tables=<-, x) => tables
  2. |> map(fn: (r) => ({r with _value: r._value * x}))
  3. data
  4. |> multByX(x: 2.0)

Read more


Extract scalar values

Use Flux dynamic query functions to extract scalar values from Flux query output. This lets you, for example, dynamically set variables using query results.

  1. scalarValue = (tables=<-) => {
  2. _record = tables
  3. |> findRecord(fn: (key) => true, idx: 0)
  4. return _record._value
  5. }

Read more


Monitor states

Flux provides several functions to help monitor states and state changes in your data.


Operate on timestamps

Use Flux to process and operate on timestamps.


Query SQL data

The Flux sql package provides functions for working with SQL data sources. Use sql.from() to query SQL databases like PostgreSQL, MySQL, Snowflake, SQLite, Microsoft SQL Server, Amazon Athena, and Google BigQuery.

  1. import "sql"
  2. sql.from(
  3. driverName: "postgres",
  4. dataSourceName: "postgresql://user:password@localhost",
  5. query: "SELECT * FROM example_table",
  6. )

Read more


Conditional logic

This guide describes how to use Flux conditional expressions, such as if, else, and then, to query and transform data. Flux evaluates statements from left to right and stops evaluating once a condition matches.

  1. if color == "green" then "008000" else "ffffff"

Read more


Regular expressions

This guide walks through using regular expressions in evaluation logic in Flux functions.

  1. data
  2. |> filter(fn: (r) => r.tag =~ /^foo[1-3]/)
Input:
_timetag_value
2020-01-01T00:01:00Zfoo11.0
2020-01-01T00:02:00Zfoo51.2
2020-01-01T00:03:00Zbar31.8
2020-01-01T00:04:00Zfoo30.9
2020-01-01T00:05:00Zfoo21.4
2020-01-01T00:06:00Zbar12.0
Output:
_timetag_value
2020-01-01T00:01:00Zfoo11.0
2020-01-01T00:04:00Zfoo30.9
2020-01-01T00:05:00Zfoo21.4

Read more


Geo-temporal data

Use the Flux Geo package to filter geo-temporal data and group by geographic location or track.

  1. import "experimental/geo"
  2. sampleGeoData
  3. |> geo.filterRows(region: {lat: 30.04, lon: 31.23, radius: 200.0})
  4. |> geo.groupByArea(newColumn: "geoArea", level: 5)

Read more


Query the Flux version

Use runtime.version() to return the version of Flux installed in InfluxDB.

  1. import "array"
  2. import "runtime"
  3. array.from(rows: [{version: runtime.version()}])

Read more


flux query