fc

  • paddle.fluid.layers.fc(input, size, num_flatten_dims=1, param_attr=None, bias_attr=None, act=None, name=None)[源代码]

全连接层

该OP将在神经网络中构建一个全连接层。其输入可以是一个Tensor(或LoDTensor)或多个Tensor(或LoDTensor)组成的list(详见参数说明),该OP会为每个输入的Tensor创建一个权重(weights)变量,即一个从每个输入单元到每个输出单元的全连接权重矩阵。FC层将每个输入Tensor和其对应的权重(weights)相乘得到shape为

fc - 图1 输出Tensor,其中 M 为batch_size大小。如果有多个输入Tensor,则多个shape为 fc - 图2 的Tensor计算结果会被累加起来,作为最终输出。如果 bias_attr 非空,则会创建一个偏置变量(bias variable),并把它累加到输出结果中。如果 act 非空,将会在输出结果上应用相应的激活函数。

当输入为单个Tensor(或LoDTensor):

fc - 图3

当输入为多个Tensor(或LoDTensor)组成的list时:

fc - 图4

  • 上述等式中:
    • fc - 图5 :输入的数目,如果输入是Tensor列表,N等于len(input)
    • fc - 图6 :第i个输入的Tensor
    • fc - 图7 :对应第i个输入张量的第i个权重矩阵
    • fc - 图8 :该层创建的bias参数
    • fc - 图9 :activation function(激活函数)
    • fc - 图10 :输出Tensor
  1. Case 1
  2. 给定单个输入Tensor data_1, num_flatten_dims = 2:
  3. data_1.data = [[[0.1, 0.2],
  4. [0.3, 0.4]]]
  5. data_1.shape = (1, 2, 2) # 1是batch_size
  6.  
  7. out = fluid.layers.fc(input=data_1, size=1 num_flatten_dims=2)
  8.  
  9. 则输出为:
  10. out.data = [[0.83234344], [0.34936576]]
  11. out.shape = (1, 2, 1)
  12.  
  13. Case 2:
  14. 给定多个Tensor组成的list:
  15. data_1.data = [[[0.1, 0.2],
  16. [0.3, 0.4]]]
  17. data_1.shape = (1, 2, 2) # 1 是 batch_size
  18.  
  19. data_2 = [[[0.1, 0.2, 0.3]]]
  20. data_2.shape = (1, 1, 3)
  21.  
  22. out = fluid.layers.fc(input=[data_1, data_2], size=2)
  23.  
  24. 则输出为:
  25. out.data = [[0.18669507, 0.1893476]]
  26. out.shape = (1, 2)
  • 参数:
    • input (Variable|list of Variable) – 维度为 fc - 图11 的多维Tensor(或LoDTensor)或由多个Tensor(或LoDTensor)组成的list,输入Tensor的shape至少是2。数据类型为float32或float64。
    • size (int) – 全连接层输出单元的数目,即输出Tensor(或LoDTensor)特征维度。
    • num_flatten_dims (int) – 输入可以接受维度大于2的Tensor。在计算时,输入首先会被扁平化(flatten)为一个二维矩阵,之后再与权重(weights)相乘。参数 num_flatten_dims 决定了输入Tensor的flatten方式: 前 num_flatten_dims (包含边界,从1开始数) 个维度会被扁平化为二维矩阵的第一维 (即为矩阵的高), 剩下的 fc - 图12 维被扁平化为二维矩阵的第二维 (即矩阵的宽)。 例如, 假设X是一个五维的Tensor,其shape为(2, 3, 4, 5, 6), 若 fc - 图13 ,则扁平化的矩阵shape为: fc - 图14 ,最终输出Tensor的shape为 fc - 图15 。默认为1。
    • param_attr (ParamAttr) – 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 ParamAttr
    • bias_attr (ParamAttr) – 指定偏置参数属性的对象。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 ParamAttr
    • act (str) – 应用于输出上的激活函数,如tanh、softmax、sigmoid,relu等,支持列表请参考 激活函数 ,默认值为None。
    • name (str,可选) – 具体用法请参见 Name ,一般无需设置,默认值为None。

返回:经过全连接层计算后的Tensor或LoDTensor,数据类型与input类型一致。

返回类型: Variable

弹出异常:ValueError - 如果输入Tensor(或LoDTensor)的维度小于2

代码示例

  1. import paddle.fluid as fluid
  2. # 当输入为单个张量时
  3.  
  4. data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
  5. fc = fluid.layers.fc(input=data, size=1000, act="tanh")
  6.  
  7. # 当输入为多个张量时
  8. data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
  9. data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
  10. fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")