RMSPropOptimizer
- class
paddle.fluid.optimizer.
RMSPropOptimizer
(learning_rate, rho=0.95, epsilon=1e-06, momentum=0.0, centered=False, regularization=None, name=None)[源代码]
该接口实现均方根传播(RMSProp)法,是一种未发表的,自适应学习率的方法。原演示幻灯片中提出了RMSProp:[http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf]中的第29张。等式如下所示:
第一个等式计算每个权重平方梯度的移动平均值,然后将梯度除以
。
如果居中为真:
其中,
是超参数,典型值为0.9,0.95等。 是动量术语。 是一个平滑项,用于避免除零,通常设置在1e-4到1e-8的范围内。
- 参数:
- learning_rate (float) - 全局学习率。
- rho (float,可选) - rho是等式中的 ,默认值0.95。
- epsilon (float,可选) - 等式中的epsilon是平滑项,避免被零除,默认值1e-6。
- momentum (float,可选) - 方程中的β是动量项,默认值0.0。
- centered (bool,可选) - 如果为True,则通过梯度的估计方差,对梯度进行归一化;如果False,则由未centered的第二个moment归一化。将此设置为True有助于模型训练,但会消耗额外计算和内存资源。默认为False。
- regularization - 正则器项,如
fluid.regularizer.L2DecayRegularizer
。 - name (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。
- 抛出异常:
ValueError
-如果learning_rate
,rho
,epsilon
,momentum
为None。
示例代码
- import paddle
- import paddle.fluid as fluid
- import numpy as np
- place = fluid.CPUPlace()
- main = fluid.Program()
- with fluid.program_guard(main):
- x = fluid.layers.data(name='x', shape=[13], dtype='float32')
- y = fluid.layers.data(name='y', shape=[1], dtype='float32')
- y_predict = fluid.layers.fc(input=x, size=1, act=None)
- cost = fluid.layers.square_error_cost(input=y_predict, label=y)
- avg_cost = fluid.layers.mean(cost)
- rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
- rms_optimizer.minimize(avg_cost)
- fetch_list = [avg_cost]
- train_reader = paddle.batch(
- paddle.dataset.uci_housing.train(), batch_size=1)
- feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
- exe = fluid.Executor(place)
- exe.run(fluid.default_startup_program())
- for data in train_reader():
- exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
minimize
(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
- 参数:
- loss (Variable) – 需要最小化的损失值变量
- startup_program (Program, 可选) – 用于初始化parameter_list中参数的 Program , 默认值为None,此时将使用 default_startup_program
- parameter_list (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- no_grad_set (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- grad_clip (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回类型: tuple
示例代码
- import paddle
- import paddle.fluid as fluid
- import numpy as np
- place = fluid.CPUPlace()
- main = fluid.Program()
- with fluid.program_guard(main):
- x = fluid.layers.data(name='x', shape=[13], dtype='float32')
- y = fluid.layers.data(name='y', shape=[1], dtype='float32')
- y_predict = fluid.layers.fc(input=x, size=1, act=None)
- cost = fluid.layers.square_error_cost(input=y_predict, label=y)
- avg_cost = fluid.layers.mean(cost)
- rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
- rms_optimizer.minimize(avg_cost)
- fetch_list = [avg_cost]
- train_reader = paddle.batch(
- paddle.dataset.uci_housing.train(), batch_size=1)
- feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
- exe = fluid.Executor(place)
- exe.run(fluid.default_startup_program())
- for data in train_reader():
- exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)