crop_tensor
paddle.fluid.layers.
crop_tensor
(x, shape=None, offsets=None, name=None)[源代码]
根据偏移量(offsets)和形状(shape),裁剪输入(x)Tensor。
示例:
- * 示例1(输入为2-D Tensor):
- 输入:
- X.shape = [3, 5]
- X.data = [[0, 1, 2, 0, 0],
- [0, 3, 4, 0, 0],
- [0, 0, 0, 0, 0]]
- 参数:
- shape = [2, 2]
- offsets = [0, 1]
- 输出:
- Out.shape = [2, 2]
- Out.data = [[1, 2],
- [3, 4]]
- * 示例2(输入为3-D Tensor):
- 输入:
- X.shape = [2, 3, 4]
- X.data = [[[0, 1, 2, 3],
- [0, 5, 6, 7],
- [0, 0, 0, 0]],
- [[0, 3, 4, 5],
- [0, 6, 7, 8],
- [0, 0, 0, 0]]]
- 参数:
- shape = [2, 2, -1]
- offsets = [0, 0, 1]
- 输出:
- Out.shape = [2, 2, 3]
- Out.data = [[[1, 2, 3],
- [5, 6, 7]],
- [[3, 4, 5],
- [6, 7, 8]]]
- 参数:
- x (Variable): 1-D到6-D Tensor,数据类型为float32、float64、int32或者int64。
- shape (list|tuple|Variable) - 输出Tensor的形状,数据类型为int32。如果是列表或元组,则其长度必须与x的维度大小相同,如果是Variable,则其应该是1-D Tensor。当它是列表时,每一个元素可以是整数或者形状为[1]的Tensor。含有Variable的方式适用于每次迭代时需要改变输出形状的情况。
- offsets (list|tuple|Variable,可选) - 每个维度上裁剪的偏移量,数据类型为int32。如果是列表或元组,则其长度必须与x的维度大小相同,如果是Variable,则其应是1-D Tensor。当它是列表时,每一个元素可以是整数或者形状为[1]的Variable。含有Variable的方式适用于每次迭代的偏移量(offset)都可能改变的情况。默认值:None,每个维度的偏移量为0。
- name (str,可选) - 具体用法请参见 Name ,一般无需设置,默认值为None。
返回: 裁剪后的Tensor,数据类型与输入(x)相同。
返回类型: Variable
- 抛出异常:
TypeError
- x 的数据类型应该是float32、float64、int32或者int64。TypeError
- shape 应该是列表、元组或Variable。TypeError
- shape 的数据类型应该是int32。TypeError
- offsets 应该是列表、元组、Variable或None。TypeError
- offsets 的数据类型应该是int32。TypeError
- offsets 的元素应该大于等于0。
代码示例:
- import paddle.fluid as fluid
- x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
- # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.
- # shape is a 1-D Tensor
- crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
- crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
- # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.
- # or shape is a list in which each element is a constant
- crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
- # crop1.shape = [-1, 2, 3]
- # or shape is a list in which each element is a constant or Tensor
- y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
- dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32")
- crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
- # crop2.shape = [3, -1, 4]
- # offsets is a 1-D Tensor
- crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
- crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
- # crop3.shape = [-1, 2, 3]
- # offsets is a list in which each element is a constant or Tensor
- offsets_var = fluid.data(name="dim1", shape=[1], dtype="int32")
- crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
- # crop4.shape = [-1, 2, 3]