L2Decay
paddle.fluid.regularizer.
L2Decay
L2Decay实现L2权重衰减正则化,用于模型训练,有助于防止模型对训练数据过拟合。
具体实现中,L2权重衰减正则化的计算公式如下:
- 参数:
- regularization_coeff (float) – 正则化系数,默认值为0.0。
代码示例
- import paddle.fluid as fluid
- main_prog = fluid.Program()
- startup_prog = fluid.Program()
- with fluid.program_guard(main_prog, startup_prog):
- data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
- label = fluid.layers.data(name='label', shape=[1], dtype='int64')
- hidden = fluid.layers.fc(input=data, size=128, act='relu')
- prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
- loss = fluid.layers.cross_entropy(input=prediction, label=label)
- avg_loss = fluid.layers.mean(loss)
- optimizer = fluid.optimizer.Adagrad(
- learning_rate=1e-4,
- regularization=fluid.regularizer.L2Decay(
- regularization_coeff=0.1))
- optimizer.minimize(avg_loss)