piecewise_decay
paddle.fluid.layers.
piecewise_decay
(boundaries, values)[源代码]
对初始学习率进行分段衰减。
该算法可用如下代码描述。
- boundaries = [10000, 20000]
- values = [1.0, 0.5, 0.1]
- if step < 10000:
- learning_rate = 1.0
- elif 10000 <= step < 20000:
- learning_rate = 0.5
- else:
- learning_rate = 0.1
- 参数:
- boundaries(list) - 代表步数的数字
- values(list) - 学习率的值,不同的步边界中的学习率值
返回:衰减的学习率
代码示例:
- import paddle.fluid as fluid
- boundaries = [10000, 20000]
- values = [1.0, 0.5, 0.1]
- optimizer = fluid.optimizer.Momentum(
- momentum=0.9,
- learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
- regularization=fluid.regularizer.L2Decay(1e-4))