Exercise: Expression Evaluation
Let’s write a simple recursive evaluator for arithmetic expressions.
An example of a small arithmetic expression could be 10 + 20
, which evaluates to 30
. We can represent the expression as a tree:
A bigger and more complex expression would be (10 * 9) + ((3 - 4) * 5)
, which evaluate to 85
. We represent this as a much bigger tree:
In code, we will represent the tree with two types:
#![allow(unused)]
fn main() {
/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {
Add,
Sub,
Mul,
Div,
}
/// An expression, in tree form.
#[derive(Debug)]
enum Expression {
/// An operation on two subexpressions.
Op { op: Operation, left: Box<Expression>, right: Box<Expression> },
/// A literal value
Value(i64),
}
}
The Box
type here is a smart pointer, and will be covered in detail later in the course. An expression can be “boxed” with Box::new
as seen in the tests. To evaluate a boxed expression, use the deref operator (*
) to “unbox” it: eval(*boxed_expr)
.
Some expressions cannot be evaluated and will return an error. The standard ResultOk(Value)
) or an error (Err(String)
). We will cover this type in detail later.
Copy and paste the code into the Rust playground, and begin implementing eval
. The final product should pass the tests. It may be helpful to use todo!()
and get the tests to pass one-by-one. You can also skip a test temporarily with #[ignore]
:
#[test]
#[ignore]
fn test_value() { .. }
#![allow(unused)]
fn main() {
/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {
Add,
Sub,
Mul,
Div,
}
/// An expression, in tree form.
#[derive(Debug)]
enum Expression {
/// An operation on two subexpressions.
Op { op: Operation, left: Box<Expression>, right: Box<Expression> },
/// A literal value
Value(i64),
}
fn eval(e: Expression) -> Result<i64, String> {
todo!()
}
#[test]
fn test_value() {
assert_eq!(eval(Expression::Value(19)), Ok(19));
}
#[test]
fn test_sum() {
assert_eq!(
eval(Expression::Op {
op: Operation::Add,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(20)),
}),
Ok(30)
);
}
#[test]
fn test_recursion() {
let term1 = Expression::Op {
op: Operation::Mul,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(9)),
};
let term2 = Expression::Op {
op: Operation::Mul,
left: Box::new(Expression::Op {
op: Operation::Sub,
left: Box::new(Expression::Value(3)),
right: Box::new(Expression::Value(4)),
}),
right: Box::new(Expression::Value(5)),
};
assert_eq!(
eval(Expression::Op {
op: Operation::Add,
left: Box::new(term1),
right: Box::new(term2),
}),
Ok(85)
);
}
#[test]
fn test_zeros() {
assert_eq!(
eval(Expression::Op {
op: Operation::Add,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))
}),
Ok(0)
);
assert_eq!(
eval(Expression::Op {
op: Operation::Mul,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))
}),
Ok(0)
);
assert_eq!(
eval(Expression::Op {
op: Operation::Sub,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))
}),
Ok(0)
);
}
#[test]
fn test_error() {
assert_eq!(
eval(Expression::Op {
op: Operation::Div,
left: Box::new(Expression::Value(99)),
right: Box::new(Expression::Value(0)),
}),
Err(String::from("division by zero"))
);
}
}