- Profile Definitions
- 1.1 - Rancher HA Kubernetes cluster host configuration
- 2.1 - Rancher HA Kubernetes Cluster Configuration via RKE
- 3.1 - Rancher Management Control Plane Installation
- 3.2 - Rancher Management Control Plane Authentication
- 3.3 - Rancher Management Control Plane RBAC
- 3.4 - Rancher Management Control Plane Configuration
- Appendix A - Complete RKE
cluster.yml
Example
This document provides prescriptive guidance for hardening a production installation of Rancher v2.1.x. It outlines the configurations and controls required to address Kubernetes benchmark controls from the Center for Information Security (CIS).
This hardening guide describes how to secure the nodes in your cluster, and it is recommended to follow this guide before installing Kubernetes.
This hardening guide is intended to be used with specific versions of the CIS Kubernetes Benchmark, Kubernetes, and Rancher:
Hardening Guide Version | Rancher Version | CIS Benchmark Version | Kubernetes Version |
---|---|---|---|
Hardening Guide v2.1 | Rancher v2.1.x | Benchmark v1.3.0 | Kubernetes 1.11 |
Click here to download a PDF version of this document
For more detail on how a hardened cluster scores against the official CIS benchmark, refer to the CIS Benchmark Rancher Self-Assessment Guide - Rancher v2.1.x.
Profile Definitions
The following profile definitions agree with the CIS benchmarks for Kubernetes.
A profile is a set of configurations that provide a certain amount of hardening. Generally, the more hardened an environment is, the more it affects performance.
Level 1
Items in this profile intend to:
- offer practical advice appropriate for the environment;
- deliver an obvious security benefit; and
- not alter the functionality or utility of the environment beyond an acceptable margin
Level 2
Items in this profile extend the “Level 1” profile and exhibit one or more of the following characteristics:
- are intended for use in environments or use cases where security is paramount
- act as a defense in depth measure
- may negatively impact the utility or performance of the technology
1.1 - Rancher HA Kubernetes cluster host configuration
1.1.1 - Configure default sysctl settings on all hosts
Profile Applicability
- Level 1
Description
Configure sysctl settings to match what the kubelet would set if allowed.
Rationale
We recommend that users launch the kubelet with the --protect-kernel-defaults
option. The settings that the kubelet initially attempts to change can be set manually.
This supports the following control:
- 2.1.7 - Ensure that the
--protect-kernel-defaults
argument is set to true (Scored)
Audit
- Verify
vm.overcommit_memory = 1
sysctl vm.overcommit_memory
- Verify
kernel.panic = 10
sysctl kernel.panic
- Verify
kernel.panic_on_oops = 1
sysctl kernel.panic_on_oops
Remediation
- Set the following parameters in
/etc/sysctl.conf
on all nodes:
vm.overcommit_memory=1
kernel.panic=10
kernel.panic_on_oops=1
- Run
sysctl -p
to enable the settings.
1.1.2 - Install the encryption provider configuration on all control plane nodes
Profile Applicability
- Level 1
Description
Create a Kubernetes encryption configuration file on each of the RKE nodes that will be provisioned with the controlplane
role:
Rationale
This configuration file will ensure that the Rancher RKE cluster encrypts secrets at rest, which Kubernetes does not do by default.
This supports the following controls:
- 1.1.34 - Ensure that the
--experimental-encryption-provider-config
argument is set as appropriate (Scored) - 1.1.35 - Ensure that the encryption provider is set to
aescbc
(Scored)
Audit
On the control plane hosts for the Rancher HA cluster run:
stat /etc/kubernetes/encryption.yaml
Ensure that:
- The file is present
- The file mode is
0600
- The file owner is
root:root
- The file contains:
apiVersion: v1
kind: EncryptionConfig
resources:
- resources:
- secrets
providers:
- aescbc:
keys:
- name: key1
secret: <32-byte base64 encoded string>
- identity: {}
Where aescbc
is the key type, and secret
is populated with a 32-byte base64 encoded string.
Remediation
- Generate a key and an empty configuration file:
head -c 32 /dev/urandom | base64 -i -
touch /etc/kubernetes/encryption.yaml
- Set the file ownership to
root:root
and the permissions to0600
chown root:root /etc/kubernetes/encryption.yaml
chmod 0600 /etc/kubernetes/encryption.yaml
- Set the contents to:
apiVersion: v1
kind: EncryptionConfig
resources:
- resources:
- secrets
providers:
- aescbc:
keys:
- name: key1
secret: <32-byte base64 encoded string>
- identity: {}
Where secret
is the 32-byte base64-encoded string generated in the first step.
1.1.3 - Install the audit log configuration on all control plane nodes.
Profile Applicability
- Level 1
Description
Place the configuration file for Kubernetes audit logging on each of the control plane nodes in the cluster.
Rationale
The Kubernetes API has audit logging capability that is the best way to track actions in the cluster.
This supports the following controls:
- 1.1.15 - Ensure that the
--audit-log-path
argument is set as appropriate (Scored) - 1.1.16 - Ensure that the
--audit-log-maxage
argument is as appropriate (Scored) - 1.1.17 - Ensure that the
--audit-log-maxbackup
argument is set as appropriate (Scored) - 1.1.18 - Ensure that the
--audit-log-maxsize
argument is set as appropriate (Scored) - 1.1.37 - Ensure that the
AdvancedAuditing
argument is not set to false (Scored)
Audit
On each control plane node, run:
stat /etc/kubernetes/audit.yaml
Ensure that:
- The file is present
- The file mode is
0600
- The file owner is
root:root
- The file contains:
apiVersion: audit.k8s.io/v1beta1
kind: Policy
rules:
- level: Metadata
Remediation
On nodes with the controlplane
role:
- Generate an empty configuration file:
touch /etc/kubernetes/audit.yaml
- Set the file ownership to
root:root
and the permissions to0600
chown root:root /etc/kubernetes/audit.yaml
chmod 0600 /etc/kubernetes/audit.yaml
- Set the contents to:
apiVersion: audit.k8s.io/v1beta1
kind: Policy
rules:
- level: Metadata
1.1.4 - Place Kubernetes event limit configuration on each control plane host
Profile Applicability
- Level 1
Description
Place the configuration file for Kubernetes event limit configuration on each of the control plane nodes in the cluster.
Rationale
Set up the EventRateLimit
admission control plugin to prevent clients from overwhelming the API server. The settings below are intended as an initial value and may need to be adjusted for larger clusters.
This supports the following control:
- 1.1.36 - Ensure that the admission control plugin
EventRateLimit
is set (Scored)
Audit
On nodes with the controlplane
role run:
stat /etc/kubernetes/admission.yaml
stat /etc/kubernetes/event.yaml
For each file, ensure that:
- The file is present
- The file mode is
0600
- The file owner is
root:root
For admission.yaml
ensure that the file contains:
apiVersion: apiserver.k8s.io/v1alpha1
kind: AdmissionConfiguration
plugins:
- name: EventRateLimit
path: /etc/kubernetes/event.yaml
For event.yaml
ensure that the file contains:
apiVersion: eventratelimit.admission.k8s.io/v1alpha1
kind: Configuration
limits:
- type: Server
qps: 500
burst: 5000
Remediation
On nodes with the controlplane
role:
- Generate an empty configuration file:
touch /etc/kubernetes/admission.yaml
touch /etc/kubernetes/event.yaml
- Set the file ownership to
root:root
and the permissions to0600
chown root:root /etc/kubernetes/admission.yaml
chown root:root /etc/kubernetes/event.yaml
chmod 0600 /etc/kubernetes/admission.yaml
chmod 0600 /etc/kubernetes/event.yaml
- For
admission.yaml
set the contents to:
apiVersion: apiserver.k8s.io/v1alpha1
kind: AdmissionConfiguration
plugins:
- name: EventRateLimit
path: /etc/kubernetes/event.yaml
- For
event.yaml
set the contents to:
apiVersion: eventratelimit.admission.k8s.io/v1alpha1
kind: Configuration
limits:
- type: Server
qps: 500
burst: 5000
2.1 - Rancher HA Kubernetes Cluster Configuration via RKE
(See Appendix A. for full RKE cluster.yml
example)
2.1.1 - Configure kubelet options
Profile Applicability
- Level 1
Description
Ensure Kubelet options are configured to match CIS controls.
Rationale
To pass the following controls in the CIS benchmark, ensure the appropriate flags are passed to the Kubelet.
- 2.1.6 - Ensure that the
--streaming-connection-idle-timeout
argument is not set to 0 (Scored) - 2.1.7 - Ensure that the
--protect-kernel-defaults
argument is set to true (Scored) - 2.1.8 - Ensure that the
--make-iptables-util-chains
argument is set to true (Scored) - 2.1.10 - Ensure that the
--event-qps
argument is set to 0 (Scored)
Audit
Inspect the Kubelet containers on all hosts and verify that they are running with the following options:
--streaming-connection-idle-timeout=<duration greater than 0>
--protect-kernel-defaults=true
--make-iptables-util-chains=true
--event-qps=0
Remediation
- Add the following to the RKE
cluster.yml
kubelet section underservices
:
services:
kubelet:
extra_args:
streaming-connection-idle-timeout: "<duration>"
protect-kernel-defaults: "true"
make-iptables-util-chains: "true"
event-qps: "0"
Where <duration>
is in a form like 1800s
.
- Reconfigure the cluster:
rke up --config cluster.yml
2.1.2 - Configure kube-api options
Profile Applicability
- Level 1
Description
Ensure the RKE configuration is set to deploy the kube-api
service with the options required for controls.
Rationale
To pass the following controls for the kube-api server ensure RKE configuration passes the appropriate options.
- 1.1.1 - Ensure that the
--anonymous-auth
argument is set to false (Scored) - 1.1.8 - Ensure that the
--profiling argument
is set to false (Scored) - 1.1.9 - Ensure that the
--repair-malformed-updates
argument is set to false (Scored) - 1.1.11 - Ensure that the admission control plugin
AlwaysPullImages
is set (Scored) - 1.1.12 - Ensure that the admission control plugin
DenyEscalatingExec
is set (Scored) - 1.1.14 - Ensure that the admission control plugin
NamespaceLifecycle
is set (Scored) - 1.1.15 - Ensure that the
--audit-log-path
argument is set as appropriate (Scored) - 1.1.16 - Ensure that the
--audit-log-maxage
argument is set as appropriate (Scored) - 1.1.17 - Ensure that the
--audit-log-maxbackup
argument is set as appropriate (Scored) - 1.1.18 - Ensure that the
--audit-log-maxsize
argument is set as appropriate (Scored) - 1.1.23 - Ensure that the
--service-account-lookup
argument is set to true (Scored) - 1.1.24 - Ensure that the admission control plugin
PodSecurityPolicy
is set (Scored) - 1.1.34 - Ensure that the
--experimental-encryption-provider-config
argument is set as appropriate (Scored) - 1.1.35 - Ensure that the encryption provider is set to
aescbc
(Scored) - 1.1.36 - Ensure that the admission control plugin
EventRateLimit
is set (Scored) - 1.1.37 - Ensure that the
AdvancedAuditing
argument is not set tofalse
(Scored)
Audit
- On nodes with the
controlplane
role inspect thekube-apiserver
containers:
docker inspect kube-apiserver
- Look for the following options in the command section of the output:
--anonymous-auth=false
--profiling=false
--repair-malformed-updates=false
--service-account-lookup=true
--enable-admission-plugins= "ServiceAccount,NamespaceLifecycle,LimitRanger,PersistentVolumeLabel,DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds,AlwaysPullImages,DenyEscalatingExec,NodeRestriction,EventRateLimit,PodSecurityPolicy"
--experimental-encryption-provider-config=/etc/kubernetes/encryption.yaml
--admission-control-config-file=/etc/kubernetes/admission.yaml
--audit-log-path=/var/log/kube-audit/audit-log.json
--audit-log-maxage=5
--audit-log-maxbackup=5
--audit-log-maxsize=100
--audit-log-format=json
--audit-policy-file=/etc/kubernetes/audit.yaml
- In the
volume
section of the output ensure the bind mount is present:
/var/log/kube-audit:/var/log/kube-audit
Remediation
- In the RKE
cluster.yml
add the following directives to thekube-api
section underservices
:
services:
kube-api:
pod_security_policy: true
extra_args:
anonymous-auth: "false"
profiling: "false"
repair-malformed-updates: "false"
service-account-lookup: "true"
enable-admission-plugins: "ServiceAccount,NamespaceLifecycle,LimitRanger,PersistentVolumeLabel,DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds,AlwaysPullImages,DenyEscalatingExec,NodeRestriction,EventRateLimit,PodSecurityPolicy"
experimental-encryption-provider-config: /etc/kubernetes/encryption.yaml
admission-control-config-file: "/etc/kubernetes/admission.yaml"
audit-log-path: "/var/log/kube-audit/audit-log.json"
audit-log-maxage: "5"
audit-log-maxbackup: "5"
audit-log-maxsize: "100"
audit-log-format: "json"
audit-policy-file: /etc/kubernetes/audit.yaml
extra_binds:
- "/var/log/kube-audit:/var/log/kube-audit"
- Reconfigure the cluster:
rke up --config cluster.yml
2.1.3 - Configure scheduler options
Profile Applicability
- Level 1
Description
Set the appropriate options for the Kubernetes scheduling service.
Rationale
To address the following controls on the CIS benchmark, the command line options should be set on the Kubernetes scheduler.
- 1.2.1 - Ensure that the
--profiling
argument is set tofalse
(Scored) - 1.2.2 - Ensure that the
--address
argument is set to127.0.0.1
(Scored)
Audit
- On nodes with the
controlplane
role: inspect thekube-scheduler
containers:
docker inspect kube-scheduler
- Verify the following options are set in the
command
section.
--profiling=false
--address=127.0.0.1
Remediation
- In the RKE
cluster.yml
file ensure the following options are set:
services:
…
scheduler:
extra_args:
profiling: "false"
address: "127.0.0.1"
- Reconfigure the cluster:
rke up --config cluster.yml
2.1.4 - Configure controller options
Profile Applicability
- Level 1
Description
Set the appropriate arguments on the Kubernetes controller manager.
Rationale
To address the following controls the options need to be passed to the Kubernetes controller manager.
- 1.3.1 - Ensure that the
--terminated-pod-gc-threshold
argument is set as appropriate (Scored) - 1.3.2 - Ensure that the
--profiling
argument is set to false (Scored) - 1.3.7 - Ensure that the
--address
argument is set to 127.0.0.1 (Scored)
Audit
- On nodes with the
controlplane
role inspect thekube-controller-manager
container:
docker inspect kube-controller-manager
- Verify the following options are set in the
command
section:
--terminated-pod-gc-threshold=1000
--profiling=false
--address=127.0.0.1
Remediation
- In the RKE
cluster.yml
file ensure the following options are set:
services:
kube-controller:
extra_args:
profiling: "false"
address: "127.0.0.1"
terminated-pod-gc-threshold: "1000"
- Reconfigure the cluster:
rke up --config cluster.yml
2.1.5 - Configure addons and PSPs
Profile Applicability
- Level 1
Description
Configure a restrictive PodSecurityPolicy (PSP) as the default and create role bindings for system level services to use the less restrictive default PSP.
Rationale
To address the following controls, a restrictive default PSP needs to be applied as the default. Role bindings need to be in place to allow system services to still function.
- 1.7.1 - Do not admit privileged containers (Not Scored)
- 1.7.2 - Do not admit containers wishing to share the host process ID namespace (Not Scored)
- 1.7.3 - Do not admit containers wishing to share the host IPC namespace (Not Scored)
- 1.7.4 - Do not admit containers wishing to share the host network namespace (Not Scored)
- 1.7.5 - Do not admit containers with
allowPrivilegeEscalation
(Not Scored) - 1.7.6 - Do not admit root containers (Not Scored)
- 1.7.7 - Do not admit containers with dangerous capabilities (Not Scored)
Audit
- Verify that the
cattle-system
namespace exists:
kubectl get ns |grep cattle
- Verify that the roles exist:
kubectl get role default-psp-role -n ingress-nginx
kubectl get role default-psp-role -n cattle-system
kubectl get clusterrole psp:restricted
- Verify the bindings are set correctly:
kubectl get rolebinding -n ingress-nginx default-psp-rolebinding
kubectl get rolebinding -n cattle-system default-psp-rolebinding
kubectl get clusterrolebinding psp:restricted
- Verify the restricted PSP is present.
kubectl get psp restricted
Remediation
- In the RKE
cluster.yml
file ensure the following options are set:
addons: |
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: default-psp-role
namespace: ingress-nginx
rules:
- apiGroups:
- extensions
resourceNames:
- default-psp
resources:
- podsecuritypolicies
verbs:
- use
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: default-psp-rolebinding
namespace: ingress-nginx
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: default-psp-role
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:serviceaccounts
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:authenticated
---
apiVersion: v1
kind: Namespace
metadata:
name: cattle-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: default-psp-role
namespace: cattle-system
rules:
- apiGroups:
- extensions
resourceNames:
- default-psp
resources:
- podsecuritypolicies
verbs:
- use
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: default-psp-rolebinding
namespace: cattle-system
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: default-psp-role
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:serviceaccounts
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:authenticated
---
apiVersion: extensions/v1beta1
kind: PodSecurityPolicy
metadata:
name: restricted
spec:
requiredDropCapabilities:
- NET_RAW
privileged: false
allowPrivilegeEscalation: false
defaultAllowPrivilegeEscalation: false
fsGroup:
rule: RunAsAny
runAsUser:
rule: MustRunAsNonRoot
seLinux:
rule: RunAsAny
supplementalGroups:
rule: RunAsAny
volumes:
- emptyDir
- secret
- persistentVolumeClaim
- downwardAPI
- configMap
- projected
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: psp:restricted
rules:
- apiGroups:
- extensions
resourceNames:
- restricted
resources:
- podsecuritypolicies
verbs:
- use
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: psp:restricted
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: psp:restricted
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:serviceaccounts
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:authenticated
- Reconfigure the cluster:
rke up --config cluster.yml
3.1 - Rancher Management Control Plane Installation
3.1.1 - Disable the local cluster option
Profile Applicability
- Level 2
Description
When deploying Rancher, disable the local cluster option on the Rancher Server.
NOTE: This requires Rancher v2.1.2 or above.
Rationale
Having access to the local cluster from the Rancher UI is convenient for troubleshooting and debugging; however, if the local cluster is enabled in the Rancher UI, a user has access to all elements of the system, including the Rancher management server itself. Disabling the local cluster is a defense in depth measure and removes the possible attack vector from the Rancher UI and API.
Audit
- Verify the Rancher deployment has the
--add-local=false
option set.
kubectl get deployment rancher -n cattle-system -o yaml |grep 'add-local'
- In the Rancher UI go to Clusters in the Global view and verify that no
local
cluster is present.
Remediation
- Upgrade to Rancher v2.1.2 via the Helm chart. While performing the upgrade, provide the following installation flag:
--set addLocal="false"
3.1.2 - Enable Rancher Audit logging
Profile Applicability
- Level 1
Description
Enable Rancher’s built-in audit logging capability.
Rationale
Tracking down what actions were performed by users in Rancher can provide insight during post mortems, and if monitored proactively can be used to quickly detect malicious actions.
Audit
- Verify that the audit log parameters were passed into the Rancher deployment.
kubectl get deployment rancher -n cattle-system -o yaml | grep auditLog
Verify that the log is going to the appropriate destination, as set by
auditLog.destination
sidecar
:
List pods:
kubectl get pods -n cattle-system
Tail logs:
kubectl logs <pod> -n cattle-system -c rancher-audit-log
hostPath
- On the worker nodes running the Rancher pods, verify that the log files are being written to the destination indicated in
auditlog.hostPath
.
Remediation
Upgrade the Rancher server installation using Helm, and configure the audit log settings. The instructions for doing so can be found in the reference section below.
Reference
3.2 - Rancher Management Control Plane Authentication
3.2.1 - Change the local administrator password from the default value
Profile Applicability
- Level 1
Description
The local administrator password should be changed from the default.
Rationale
The default administrator password is common across all Rancher installations and should be changed immediately upon startup.
Audit
Attempt to login into the UI with the following credentials: - Username: admin - Password: admin
The login attempt must not succeed.
Remediation
Change the password from admin
to a password that meets the recommended password standards for your organization.
3.2.2 - Configure an Identity Provider for Authentication
Profile Applicability
- Level 1
Description
When running Rancher in a production environment, configure an identity provider for authentication.
Rationale
Rancher supports several authentication backends that are common in enterprises. It is recommended to tie Rancher into an external authentication system to simplify user and group access in the Rancher cluster. Doing so assures that access control follows the organization’s change management process for user accounts.
Audit
- In the Rancher UI, select Global
- Select Security
- Select Authentication
- Ensure the authentication provider for your environment is active and configured correctly
Remediation
Configure the appropriate authentication provider for your Rancher installation according to the documentation found at the link in the reference section below.
Reference
3.3 - Rancher Management Control Plane RBAC
3.3.1 - Ensure that administrator privileges are only granted to those who require them
Profile Applicability
- Level 1
Description
Restrict administrator access to only those responsible for managing and operating the Rancher server.
Rationale
The admin
privilege level gives the user the highest level of access to the Rancher server and all attached clusters. This privilege should only be granted to a few people who are responsible for the availability and support of Rancher and the clusters that it manages.
Audit
The following script uses the Rancher API to show users with administrator privileges:
#!/bin/bash
for i in $(curl -sk -u 'token-<id>:<secret>' https://<RANCHER_URL>/v3/users|jq -r .data[].links.globalRoleBindings); do
curl -sk -u 'token-<id>:<secret>' $i| jq '.data[] | "\(.userId) \(.globalRoleId)"'
done
The admin
role should only be assigned to users that require administrative privileges. Any role that is not admin
or user
should be audited in the RBAC section of the UI to ensure that the privileges adhere to policies for global access.
The Rancher server permits customization of the default global permissions. We recommend that auditors also review the policies of any custom global roles.
Remediation
Remove the admin
role from any user that does not require administrative privileges.
3.4 - Rancher Management Control Plane Configuration
3.4.1 - Ensure only approved node drivers are active
Profile Applicability
- Level 1
Description
Ensure that node drivers that are not needed or approved are not active in the Rancher console.
Rationale
Node drivers are used to provision compute nodes in various cloud providers and local IaaS infrastructure. For convenience, popular cloud providers are enabled by default. If the organization does not intend to use these or does not allow users to provision resources in certain providers, the drivers should be disabled. This will prevent users from using Rancher resources to provision the nodes.
Audit
- In the Rancher UI select Global
- Select Node Drivers
- Review the list of node drivers that are in an Active state.
Remediation
If a disallowed node driver is active, visit the Node Drivers page under Global and disable it.
Appendix A - Complete RKE cluster.yml
Example
nodes:
- address: 18.191.190.205
internal_address: 172.31.24.213
user: ubuntu
role: [ "controlplane", "etcd", "worker" ]
- address: 18.191.190.203
internal_address: 172.31.24.203
user: ubuntu
role: [ "controlplane", "etcd", "worker" ]
- address: 18.191.190.10
internal_address: 172.31.24.244
user: ubuntu
role: [ "controlplane", "etcd", "worker" ]
services:
kubelet:
extra_args:
streaming-connection-idle-timeout: "1800s"
protect-kernel-defaults: "true"
make-iptables-util-chains: "true"
event-qps: "0"
kube-api:
pod_security_policy: true
extra_args:
anonymous-auth: "false"
profiling: "false"
repair-malformed-updates: "false"
service-account-lookup: "true"
enable-admission-plugins: "ServiceAccount,NamespaceLifecycle,LimitRanger,PersistentVolumeLabel,DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds,AlwaysPullImages,DenyEscalatingExec,NodeRestriction,EventRateLimit,PodSecurityPolicy"
experimental-encryption-provider-config: /etc/kubernetes/encryption.yaml
admission-control-config-file: "/etc/kubernetes/admission.yaml"
audit-log-path: "/var/log/kube-audit/audit-log.json"
audit-log-maxage: "5"
audit-log-maxbackup: "5"
audit-log-maxsize: "100"
audit-log-format: "json"
audit-policy-file: /etc/kubernetes/audit.yaml
extra_binds:
- "/var/log/kube-audit:/var/log/kube-audit"
scheduler:
extra_args:
profiling: "false"
address: "127.0.0.1"
kube-controller:
extra_args:
profiling: "false"
address: "127.0.0.1"
terminated-pod-gc-threshold: "1000"
addons: |
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: default-psp-role
namespace: ingress-nginx
rules:
- apiGroups:
- extensions
resourceNames:
- default-psp
resources:
- podsecuritypolicies
verbs:
- use
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: default-psp-rolebinding
namespace: ingress-nginx
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: default-psp-role
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:serviceaccounts
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:authenticated
---
apiVersion: v1
kind: Namespace
metadata:
name: cattle-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: default-psp-role
namespace: cattle-system
rules:
- apiGroups:
- extensions
resourceNames:
- default-psp
resources:
- podsecuritypolicies
verbs:
- use
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: default-psp-rolebinding
namespace: cattle-system
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: default-psp-role
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:serviceaccounts
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:authenticated
---
apiVersion: extensions/v1beta1
kind: PodSecurityPolicy
metadata:
name: restricted
spec:
requiredDropCapabilities:
- NET_RAW
privileged: false
allowPrivilegeEscalation: false
defaultAllowPrivilegeEscalation: false
fsGroup:
rule: RunAsAny
runAsUser:
rule: MustRunAsNonRoot
seLinux:
rule: RunAsAny
supplementalGroups:
rule: RunAsAny
volumes:
- emptyDir
- secret
- persistentVolumeClaim
- downwardAPI
- configMap
- projected
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: psp:restricted
rules:
- apiGroups:
- extensions
resourceNames:
- restricted
resources:
- podsecuritypolicies
verbs:
- use
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: psp:restricted
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: psp:restricted
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:serviceaccounts
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:authenticated