Geo-distance aggregation

Geo-distance aggregation

A multi-bucket aggregation that works on geo_point fields and conceptually works very similar to the range aggregation. The user can define a point of origin and a set of distance range buckets. The aggregation evaluates the distance of each document value from the origin point and determines the buckets it belongs to based on the ranges (a document belongs to a bucket if the distance between the document and the origin falls within the distance range of the bucket).

  1. PUT /museums
  2. {
  3. "mappings": {
  4. "properties": {
  5. "location": {
  6. "type": "geo_point"
  7. }
  8. }
  9. }
  10. }
  11. POST /museums/_bulk?refresh
  12. {"index":{"_id":1}}
  13. {"location": "52.374081,4.912350", "name": "NEMO Science Museum"}
  14. {"index":{"_id":2}}
  15. {"location": "52.369219,4.901618", "name": "Museum Het Rembrandthuis"}
  16. {"index":{"_id":3}}
  17. {"location": "52.371667,4.914722", "name": "Nederlands Scheepvaartmuseum"}
  18. {"index":{"_id":4}}
  19. {"location": "51.222900,4.405200", "name": "Letterenhuis"}
  20. {"index":{"_id":5}}
  21. {"location": "48.861111,2.336389", "name": "Musée du Louvre"}
  22. {"index":{"_id":6}}
  23. {"location": "48.860000,2.327000", "name": "Musée d'Orsay"}
  24. POST /museums/_search?size=0
  25. {
  26. "aggs": {
  27. "rings_around_amsterdam": {
  28. "geo_distance": {
  29. "field": "location",
  30. "origin": "52.3760, 4.894",
  31. "ranges": [
  32. { "to": 100000 },
  33. { "from": 100000, "to": 300000 },
  34. { "from": 300000 }
  35. ]
  36. }
  37. }
  38. }
  39. }

Response:

  1. {
  2. ...
  3. "aggregations": {
  4. "rings_around_amsterdam": {
  5. "buckets": [
  6. {
  7. "key": "*-100000.0",
  8. "from": 0.0,
  9. "to": 100000.0,
  10. "doc_count": 3
  11. },
  12. {
  13. "key": "100000.0-300000.0",
  14. "from": 100000.0,
  15. "to": 300000.0,
  16. "doc_count": 1
  17. },
  18. {
  19. "key": "300000.0-*",
  20. "from": 300000.0,
  21. "doc_count": 2
  22. }
  23. ]
  24. }
  25. }
  26. }

The specified field must be of type geo_point (which can only be set explicitly in the mappings). And it can also hold an array of geo_point fields, in which case all will be taken into account during aggregation. The origin point can accept all formats supported by the geo_point type:

  • Object format: { "lat" : 52.3760, "lon" : 4.894 } - this is the safest format as it is the most explicit about the lat & lon values
  • String format: "52.3760, 4.894" - where the first number is the lat and the second is the lon
  • Array format: [4.894, 52.3760] - which is based on the GeoJSON standard where the first number is the lon and the second one is the lat

By default, the distance unit is m (meters) but it can also accept: mi (miles), in (inches), yd (yards), km (kilometers), cm (centimeters), mm (millimeters).

  1. POST /museums/_search?size=0
  2. {
  3. "aggs": {
  4. "rings": {
  5. "geo_distance": {
  6. "field": "location",
  7. "origin": "52.3760, 4.894",
  8. "unit": "km",
  9. "ranges": [
  10. { "to": 100 },
  11. { "from": 100, "to": 300 },
  12. { "from": 300 }
  13. ]
  14. }
  15. }
  16. }
  17. }

The distances will be computed in kilometers

There are two distance calculation modes: arc (the default), and plane. The arc calculation is the most accurate. The plane is the fastest but least accurate. Consider using plane when your search context is “narrow”, and spans smaller geographical areas (~5km). plane will return higher error margins for searches across very large areas (e.g. cross continent search). The distance calculation type can be set using the distance_type parameter:

  1. POST /museums/_search?size=0
  2. {
  3. "aggs": {
  4. "rings": {
  5. "geo_distance": {
  6. "field": "location",
  7. "origin": "52.3760, 4.894",
  8. "unit": "km",
  9. "distance_type": "plane",
  10. "ranges": [
  11. { "to": 100 },
  12. { "from": 100, "to": 300 },
  13. { "from": 300 }
  14. ]
  15. }
  16. }
  17. }
  18. }

Keyed Response

Setting the keyed flag to true will associate a unique string key with each bucket and return the ranges as a hash rather than an array:

  1. POST /museums/_search?size=0
  2. {
  3. "aggs": {
  4. "rings_around_amsterdam": {
  5. "geo_distance": {
  6. "field": "location",
  7. "origin": "52.3760, 4.894",
  8. "ranges": [
  9. { "to": 100000 },
  10. { "from": 100000, "to": 300000 },
  11. { "from": 300000 }
  12. ],
  13. "keyed": true
  14. }
  15. }
  16. }
  17. }

Response:

  1. {
  2. ...
  3. "aggregations": {
  4. "rings_around_amsterdam": {
  5. "buckets": {
  6. "*-100000.0": {
  7. "from": 0.0,
  8. "to": 100000.0,
  9. "doc_count": 3
  10. },
  11. "100000.0-300000.0": {
  12. "from": 100000.0,
  13. "to": 300000.0,
  14. "doc_count": 1
  15. },
  16. "300000.0-*": {
  17. "from": 300000.0,
  18. "doc_count": 2
  19. }
  20. }
  21. }
  22. }
  23. }

It is also possible to customize the key for each range:

  1. POST /museums/_search?size=0
  2. {
  3. "aggs": {
  4. "rings_around_amsterdam": {
  5. "geo_distance": {
  6. "field": "location",
  7. "origin": "52.3760, 4.894",
  8. "ranges": [
  9. { "to": 100000, "key": "first_ring" },
  10. { "from": 100000, "to": 300000, "key": "second_ring" },
  11. { "from": 300000, "key": "third_ring" }
  12. ],
  13. "keyed": true
  14. }
  15. }
  16. }
  17. }

Response:

  1. {
  2. ...
  3. "aggregations": {
  4. "rings_around_amsterdam": {
  5. "buckets": {
  6. "first_ring": {
  7. "from": 0.0,
  8. "to": 100000.0,
  9. "doc_count": 3
  10. },
  11. "second_ring": {
  12. "from": 100000.0,
  13. "to": 300000.0,
  14. "doc_count": 1
  15. },
  16. "third_ring": {
  17. "from": 300000.0,
  18. "doc_count": 2
  19. }
  20. }
  21. }
  22. }
  23. }