Example: Enrich your data based on geolocation

Example: Enrich your data based on geolocation

geo_match enrich policies match enrich data to incoming documents based on a geographic location, using a geo_shape query.

The following example creates a geo_match enrich policy that adds postal codes to incoming documents based on a set of coordinates. It then adds the geo_match enrich policy to a processor in an ingest pipeline.

Use the create index API to create a source index containing at least one geo_shape field.

  1. PUT /postal_codes
  2. {
  3. "mappings": {
  4. "properties": {
  5. "location": {
  6. "type": "geo_shape"
  7. },
  8. "postal_code": {
  9. "type": "keyword"
  10. }
  11. }
  12. }
  13. }

Use the index API to index enrich data to this source index.

  1. PUT /postal_codes/_doc/1?refresh=wait_for
  2. {
  3. "location": {
  4. "type": "envelope",
  5. "coordinates": [ [ 13.0, 53.0 ], [ 14.0, 52.0 ] ]
  6. },
  7. "postal_code": "96598"
  8. }

Use the create enrich policy API to create an enrich policy with the geo_match policy type. This policy must include:

  • One or more source indices
  • A match_field, the geo_shape field from the source indices used to match incoming documents
  • Enrich fields from the source indices you’d like to append to incoming documents
  1. PUT /_enrich/policy/postal_policy
  2. {
  3. "geo_match": {
  4. "indices": "postal_codes",
  5. "match_field": "location",
  6. "enrich_fields": [ "location", "postal_code" ]
  7. }
  8. }

Use the execute enrich policy API to create an enrich index for the policy.

  1. POST /_enrich/policy/postal_policy/_execute

Use the create or update pipeline API to create an ingest pipeline. In the pipeline, add an enrich processor that includes:

  • Your enrich policy.
  • The field of incoming documents used to match the geoshape of documents from the enrich index.
  • The target_field used to store appended enrich data for incoming documents. This field contains the match_field and enrich_fields specified in your enrich policy.
  • The shape_relation, which indicates how the processor matches geoshapes in incoming documents to geoshapes in documents from the enrich index. See Spatial Relations for valid options and more information.
  1. PUT /_ingest/pipeline/postal_lookup
  2. {
  3. "processors": [
  4. {
  5. "enrich": {
  6. "description": "Add 'geo_data' based on 'geo_location'",
  7. "policy_name": "postal_policy",
  8. "field": "geo_location",
  9. "target_field": "geo_data",
  10. "shape_relation": "INTERSECTS"
  11. }
  12. }
  13. ]
  14. }

Use the ingest pipeline to index a document. The incoming document should include the field specified in your enrich processor.

  1. PUT /users/_doc/0?pipeline=postal_lookup
  2. {
  3. "first_name": "Mardy",
  4. "last_name": "Brown",
  5. "geo_location": "POINT (13.5 52.5)"
  6. }

To verify the enrich processor matched and appended the appropriate field data, use the get API to view the indexed document.

  1. GET /users/_doc/0

The API returns the following response:

  1. {
  2. "found": true,
  3. "_index": "users",
  4. "_type": "_doc",
  5. "_id": "0",
  6. "_version": 1,
  7. "_seq_no": 55,
  8. "_primary_term": 1,
  9. "_source": {
  10. "geo_data": {
  11. "location": {
  12. "type": "envelope",
  13. "coordinates": [[13.0, 53.0], [14.0, 52.0]]
  14. },
  15. "postal_code": "96598"
  16. },
  17. "first_name": "Mardy",
  18. "last_name": "Brown",
  19. "geo_location": "POINT (13.5 52.5)"
  20. }
  21. }