NumPy - 来自现有数据的数组
这一章中,我们会讨论如何从现有数据创建数组。
numpy.asarray
此函数类似于numpy.array
,除了它有较少的参数。 这个例程对于将 Python 序列转换为ndarray
非常有用。
numpy.asarray(a, dtype = None, order = None)
构造器接受下列参数:
序号 | 参数及描述 |
---|---|
1. | a 任意形式的输入参数,比如列表、列表的元组、元组、元组的元组、元组的列表 |
2. | dtype 通常,输入数据的类型会应用到返回的ndarray |
3. | order 'C' 为按行的 C 风格数组,'F' 为按列的 Fortran 风格数组 |
下面的例子展示了如何使用asarray
函数:
示例 1
# 将列表转换为 ndarray
import numpy as np
x = [1,2,3]
a = np.asarray(x)
print a
输出如下:
[1 2 3]
示例 2
# 设置了 dtype
import numpy as np
x = [1,2,3]
a = np.asarray(x, dtype = float)
print a
输出如下:
[ 1. 2. 3.]
示例 3
# 来自元组的 ndarray
import numpy as np
x = (1,2,3)
a = np.asarray(x)
print a
输出如下:
[1 2 3]
示例 4
# 来自元组列表的 ndarray
import numpy as np
x = [(1,2,3),(4,5)]
a = np.asarray(x)
print a
输出如下:
[(1, 2, 3) (4, 5)]
numpy.frombuffer
此函数将缓冲区解释为一维数组。 暴露缓冲区接口的任何对象都用作参数来返回ndarray
。
numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)
构造器接受下列参数:
序号 | 参数及描述 |
---|---|
1. | buffer 任何暴露缓冲区借口的对象 |
2. | dtype 返回数组的数据类型,默认为float |
3. | count 需要读取的数据数量,默认为-1 ,读取所有数据 |
4. | offset 需要读取的起始位置,默认为0 |
示例
下面的例子展示了frombuffer
函数的用法。
import numpy as np
s = 'Hello World'
a = np.frombuffer(s, dtype = 'S1')
print a
输出如下:
['H' 'e' 'l' 'l' 'o' ' ' 'W' 'o' 'r' 'l' 'd']
numpy.fromiter
此函数从任何可迭代对象构建一个ndarray
对象,返回一个新的一维数组。
numpy.fromiter(iterable, dtype, count = -1)
构造器接受下列参数:
序号 | 参数及描述 |
---|---|
1. | iterable 任何可迭代对象 |
2. | dtype 返回数组的数据类型 |
3. | count 需要读取的数据数量,默认为-1 ,读取所有数据 |
以下示例展示了如何使用内置的range()
函数返回列表对象。 此列表的迭代器用于形成ndarray
对象。
示例 1
# 使用 range 函数创建列表对象
import numpy as np
list = range(5)
print list
输出如下:
[0, 1, 2, 3, 4]
示例 2
# 从列表中获得迭代器
import numpy as np
list = range(5)
it = iter(list)
# 使用迭代器创建 ndarray
x = np.fromiter(it, dtype = float)
print x
输出如下:
[0. 1. 2. 3. 4.]