1. Design Background
Everyone knows that usability and maintainability have always been the focus of goframe
, and it’s also a significant difference between goframe
and other frameworks and components. goframe
does not adopt other common ORM
model association designs like BelongsTo
, HasOne
, HasMany
, ManyToMany
, which are cumbersome to maintain due to foreign key constraints, additional tag annotations, etc., imposing a certain cognitive load on developers. Therefore, the framework is inclined not to inject overly complex tag content, associated attributes, or methods into model structures and consistently tries to simplify the design with the goal of making model association queries as understandable and easy to use as possible. Before learning more about the With
feature, it is recommended to first understand Model Association - ScanList.
Through a series of project practices, we found that although ScanList
maintains model associations from a runtime business logic perspective, this association maintenance is not as straightforward as expected. Therefore, we continue to improve and introduce the With
model association feature, which can easily maintain the association relationships through models. Of course, this feature is still dedicated to enhancing the usability and maintainability of the overall framework, and it can be seen as a combination and improvement of ScanList
and model association maintenance.
warning
The With
feature is currently experimental.
2. An Example
Let’s start with a simple example to help better understand the With
feature, which is an improved version of the same example from the previous ScanList
section.
1. Data Structure
# User Table
CREATE TABLE `user` (
id int(10) unsigned NOT NULL AUTO_INCREMENT,
name varchar(45) NOT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
# User Detail
CREATE TABLE `user_detail` (
uid int(10) unsigned NOT NULL AUTO_INCREMENT,
address varchar(45) NOT NULL,
PRIMARY KEY (uid)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
# User Scores
CREATE TABLE `user_scores` (
id int(10) unsigned NOT NULL AUTO_INCREMENT,
uid int(10) unsigned NOT NULL,
score int(10) unsigned NOT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
2. Data Structure
Based on the table definitions, we can tell:
- The user table and user details have a
1:1
relationship. - The user table and user scores have a
1:N
relationship. - We did not demonstrate a
N:N
relationship here because, compared to a1:N
query, it’s just an additional association or one more query, and the final processing method is similar to1:N
.
The Golang
model can be defined as follows:
// User Detail
type UserDetail struct {
g.Meta `orm:"table:user_detail"`
Uid int `json:"uid"`
Address string `json:"address"`
}
// User Scores
type UserScores struct {
g.Meta `orm:"table:user_scores"`
Id int `json:"id"`
Uid int `json:"uid"`
Score int `json:"score"`
}
// User Information
type User struct {
g.Meta `orm:"table:user"`
Id int `json:"id"`
Name string `json:"name"`
UserDetail *UserDetail `orm:"with:uid=id"`
UserScores []*UserScores `orm:"with:uid=id"`
}
3. Data Insertion
To simplify the example, we create 5
user records, using transactional operations:
- User information,
id
ranges from1-5
,name
ranges fromname_1
toname_5
. - Simultaneously create
5
user detail records, whereaddress
data ranges fromaddress_1
toaddress_5
. - Each user has
5
score entries, scoring1-5
.
g.DB().Transaction(ctx, func(ctx context.Context, tx gdb.TX) error {
for i := 1; i <= 5; i++ {
// User.
user := User{
Name: fmt.Sprintf(`name_%d`, i),
}
lastInsertId, err := g.Model(user).Data(user).OmitEmpty().InsertAndGetId()
if err != nil {
return err
}
// Detail.
userDetail := UserDetail{
Uid: int(lastInsertId),
Address: fmt.Sprintf(`address_%d`, lastInsertId),
}
_, err = g.Model(userDetail).Data(userDetail).OmitEmpty().Insert()
if err != nil {
return err
}
// Scores.
for j := 1; j <= 5; j++ {
userScore := UserScores{
Uid: int(lastInsertId),
Score: j,
}
_, err = g.Model(userScore).Data(userScore).OmitEmpty().Insert()
if err != nil {
return err
}
}
}
return nil
})
After execution, the database data is as follows:
mysql> show tables;
+----------------+
| Tables_in_test |
+----------------+
| user |
| user_detail |
| user_score |
+----------------+
3 rows in set (0.01 sec)
mysql> select * from `user`;
+----+--------+
| id | name |
+----+--------+
| 1 | name_1 |
| 2 | name_2 |
| 3 | name_3 |
| 4 | name_4 |
| 5 | name_5 |
+----+--------+
5 rows in set (0.01 sec)
mysql> select * from `user_detail`;
+-----+-----------+
| uid | address |
+-----+-----------+
| 1 | address_1 |
| 2 | address_2 |
| 3 | address_3 |
| 4 | address_4 |
| 5 | address_5 |
+-----+-----------+
5 rows in set (0.00 sec)
mysql> select * from `user_score`;
+----+-----+-------+
| id | uid | score |
+----+-----+-------+
| 1 | 1 | 1 |
| 2 | 1 | 2 |
| 3 | 1 | 3 |
| 4 | 1 | 4 |
| 5 | 1 | 5 |
| 6 | 2 | 1 |
| 7 | 2 | 2 |
| 8 | 2 | 3 |
| 9 | 2 | 4 |
| 10 | 2 | 5 |
| 11 | 3 | 1 |
| 12 | 3 | 2 |
| 13 | 3 | 3 |
| 14 | 3 | 4 |
| 15 | 3 | 5 |
| 16 | 4 | 1 |
| 17 | 4 | 2 |
| 18 | 4 | 3 |
| 19 | 4 | 4 |
| 20 | 4 | 5 |
| 21 | 5 | 1 |
| 22 | 5 | 2 |
| 23 | 5 | 3 |
| 24 | 5 | 4 |
| 25 | 5 | 5 |
+----+-----+-------+
25 rows in set (0.00 sec)
4. Data Query
With the new With
feature, data querying is quite straightforward. For example, to query one record:
// Redefine it to avoid scrolling
// User Detail
type UserDetail struct {
g.Meta `orm:"table:user_detail"`
Uid int `json:"uid"`
Address string `json:"address"`
}
// User Scores
type UserScores struct {
g.Meta `orm:"table:user_scores"`
Id int `json:"id"`
Uid int `json:"uid"`
Score int `json:"score"`
}
// User Information
type User struct {
g.Meta `orm:"table:user"`
Id int `json:"id"`
Name string `json:"name"`
UserDetail *UserDetail `orm:"with:uid=id"`
UserScores []*UserScores `orm:"with:uid=id"`
}
var user *User
// WithAll will query fields with with tags, in this example, it will query tables corresponding to the UserDetail and UserScores structures
g.Model(tableUser).WithAll().Where("id", 3).Scan(&user)
The above statement will query information for a user with ID 3
, including user information, user details, and user score information. The above statement will automatically execute the following SQL
statements in the database:
2021-05-02 22:29:52.634 [DEBU] [ 2 ms] [default] SHOW FULL COLUMNS FROM `user`
2021-05-02 22:29:52.635 [DEBU] [ 1 ms] [default] SELECT * FROM `user` WHERE `id`=3 LIMIT 1
2021-05-02 22:29:52.636 [DEBU] [ 1 ms] [default] SHOW FULL COLUMNS FROM `user_detail`
2021-05-02 22:29:52.637 [DEBU] [ 1 ms] [default] SELECT `uid`,`address` FROM `user_detail` WHERE `uid`=3 LIMIT 1
2021-05-02 22:29:52.643 [DEBU] [ 6 ms] [default] SHOW FULL COLUMNS FROM `user_score`
2021-05-02 22:29:52.644 [DEBU] [ 0 ms] [default] SELECT `id`,`uid`,`score` FROM `user_score` WHERE `uid`=3
After execution, the information printed by g.Dump(user)
is as follows:
{
Id: 3,
Name: "name_3",
UserDetail: {
Uid: 3,
Address: "address_3",
},
UserScores: [
{
Id: 11,
Uid: 3,
Score: 1,
},
{
Id: 12,
Uid: 3,
Score: 2,
},
{
Id: 13,
Uid: 3,
Score: 3,
},
{
Id: 14,
Uid: 3,
Score: 4,
},
{
Id: 15,
Uid: 3,
Score: 5,
},
],
}
5. List Query
Let’s see an example of querying a list through the With
feature:
var users []*User
// With(UserDetail{}) only queries the table corresponding to UserDetail in the User structure
g.Model(users).With(UserDetail{}).Where("id>?", 3).Scan(&users)
After execution, the data printed by g.Dump(users)
is as follows:
[
{
Id: 4,
Name: "name_4",
UserDetail: {
Uid: 4,
Address: "address_4",
},
UserScores: [],
},
{
Id: 5,
Name: "name_5",
UserDetail: {
Uid: 5,
Address: "address_5",
},
UserScores: [],
},
]
6. Conditions and Sorting
When associating with the With
feature, additional association conditions can be specified, as well as sorting rules for multiple data results. For example:
type User struct {
g.Meta `orm:"table:user"`
Id int `json:"id"`
Name string `json:"name"`
UserDetail *UserDetail `orm:"with:uid=id, where:uid > 3"`
UserScores []*UserScores `orm:"with:uid=id, where:score>1 and score<5, order:score desc"`
}
Use the where
sub-tag and order
sub-tag in the orm
tag to specify additional association conditions and sorting rules.
7. unscoped
Tag
The with
struct tag supports the unscoped
feature, for example:
type User struct {
g.Meta `orm:"table:user"`
Id int `json:"id"`
Name string `json:"name"`
UserDetail *UserDetail `orm:"with:uid=id, unscoped:true"`
UserScores []*UserScore `orm:"with:uid=id, unscoped:true"`
}
3. Detailed Explanation
You might be curious about some of the usages above, such as the gmeta
package, the WithAll
method, the with
statement in the orm
tag, and the Model
method’s struct parameter recognizing table names, etc. That’s right, let’s talk about them in detail.
1. gmeta
Package
In the above data structures, you can see a g.Meta
struct is embedded in an embed
way, like:
type UserDetail struct {
g.Meta `orm:"table:user_detail"`
Uid int `json:"uid"`
Address string `json:"address"`
}
Within the GoFrame
framework, there are many such small component packages for implementing specific functions. The gmeta
package is mainly used to embed into user-defined structures, and using tags to mark the struct (like g.Meta
) in the gmeta
package with custom tag content (such as `orm:"table:user_detail"`
), and can dynamically obtain these custom tag contents with specific methods at runtime. For more details, refer to the chapter: Metadata.
Therefore, embedding g.Meta
here is to label the data table name associated with the struct.
2. Model Association Specification
In the following structure:
type User struct {
g.Meta `orm:"table:user"`
Id int `json:"id"`
Name string `json:"name"`
UserDetail *UserDetail `orm:"with:uid=id"`
UserScores []*UserScore `orm:"with:uid=id"`
}
We bind the orm
tag to the specified struct property, and specify the association relationship between the current struct (table) and the target struct (table) through the with
statement in the orm
tag. The syntax of the with
statement is as follows:
with:target_table_association_field=current_structure_association_field
The field names are case-insensitive and ignore special characters. For example, the following forms of associations can all be automatically recognized:
with:UID=ID
with:Uid=Id
with:U_ID=id
If the association fields of both tables have the same name, you can just write one, such as:
with:uid
In this example, the table corresponding to the UserDetail
property is user_detail
, and the table corresponding to the UserScores
property is user_score
. Both are associated with the user
table of the current User
struct using uid
, and the associated field of the target user
table is id
.
3. With/WithAll
1) Introduction
By default, even if the properties in our struct have orm
tags with with
statements, the ORM
component will not enable the With
feature for association queries by default. It needs to be enabled by the With/WithAll
method.
With
: Specify the association query tables by specifying the property objects.WithAll
: Enable association queries for all property structures withwith
statements in the operating object.
In our example, the WithAll
method is used, so all property model association queries in the User
table are automatically enabled. As long as the property struct is associated with a table and the orm
tag contains a with
statement, it will automatically query data and bind data according to the model structure association relationship. If we only enable association queries for some properties rather than all property models, we can use the With
method to specify. And the With
method can specify multiple associated model automatic queries. The WithAll
in this example is equivalent to:
var user *User
g.Model(tableUser).With(UserDetail{}, UserScore{}).Where("id", 3).Scan(&user)
Or like this:
var user *User
g.Model(tableUser).With(User{}.UserDetail, User{}.UserScore).Where("id", 3).Scan(&user)
2) Only Associate User Detail Model
If we only need to query user details and not user scores, we can use the With
method to enable association queries for the specified object corresponding tables, such as:
var user *User
g.Model(tableUser).With(UserDetail{}).Where("id", 3).Scan(&user)
Or like this:
var user *User
g.Model(tableUser).With(User{}.UserDetail).Where("id", 3).Scan(&user)
After execution, the data printed by g.Dump(user)
is:
{
"id": 3,
"name": "name_3",
"UserDetail": {
"uid": 3,
"address": "address_3"
},
"UserScores": []
}
3) Only Associate User Score Model
We can also associate and query only user score information, such as:
var user *User
g.Model(tableUser).With(UserScore{}).Where("id", 3).Scan(&user)
Or like this:
var user *User
g.Model(tableUser).With(User{}.UserScore).Where("id", 3).Scan(&user)
After execution, the data printed by g.Dump(user)
is:
{
"id": 3,
"name": "name_3",
"UserDetail": null,
"UserScores": [
{
"id": 11,
"uid": 3,
"score": 1
},
{
"id": 12,
"uid": 3,
"score": 2
},
{
"id": 13,
"uid": 3,
"score": 3
},
{
"id": 14,
"uid": 3,
"score": 4
},
{
"id": 15,
"uid": 3,
"score": 5
}
]
}
4) Do Not Associate Any Model Query
If we do not need any association query, it’s simpler, for example:
var user *User
g.Model(tableUser).Where("id", 3).Scan(&user)
After execution, the data printed by g.Dump(user)
is:
{
"id": 3,
"name": "name_3",
"UserDetail": null,
"UserScores": []
}
4. Usage Restrictions
1. Field Query and Filtering
As seen in our example above, we have not specified the fields to query, but in the SQL
logs printed, the query statement is not a simple SELECT *
but executed concrete field queries. Under the With
feature, automatic field query mapping according to the associated model object properties will happen, and it will automatically filter out fields that cannot be mapped.
Therefore, under the With
feature, we cannot query only some corresponding properties’ fields. To query and assign only specific fields, it is recommended to trim the model
data structure according to business scenarios and create data structures that meet specific business scenarios, rather than using one data structure to fit multiple different scenarios.
Let’s use an example for better illustration. Suppose we have an entity object data structure Content
, a common content model in a CMS
system as follows, which corresponds to the fields of the data table:
type Content struct {
Id uint `orm:"id,primary" json:"id"` // Auto-increment ID
Key string `orm:"key" json:"key"` // Unique key name, generally not commonly used
Type string `orm:"type" json:"type"` // Content model: topic, ask, article, etc., defined by the program
CategoryId uint `orm:"category_id" json:"category_id"` // Category ID
UserId uint `orm:"user_id" json:"user_id"` // User ID
Title string `orm:"title" json:"title"` // Title
Content string `orm:"content" json:"content"` // Content
Sort uint `orm:"sort" json:"sort"` // Sort order, lower value means higher priority, default is the timestamp when added, can be used to pin
Brief string `orm:"brief" json:"brief"` // Summary
Thumb string `orm:"thumb" json:"thumb"` // Thumbnail
Tags string `orm:"tags" json:"tags"` // Tag names list, stored in JSON
Referer string `orm:"referer" json:"referer"` // Content Source, e.g., GitHub/Gitee
Status uint `orm:"status" json:"status"` // Status 0: Normal, 1: Disabled
ReplyCount uint `orm:"reply_count" json:"reply_count"` // Reply count
ViewCount uint `orm:"view_count" json:"view_count"` // View count
ZanCount uint `orm:"zan_count" json:"zan_count"` // Likes
CaiCount uint `orm:"cai_count" json:"cai_count"` // Dislikes
CreatedAt *gtime.Time `orm:"created_at" json:"created_at"` // Creation time
UpdatedAt *gtime.Time `orm:"updated_at" json:"updated_at"` // Update time
}
The content list page does not need to display such detailed content, especially the Content
field, which is very large. We only need to query a few fields for the list page. Therefore, we can define a separate data structure for list returns (field trimming) instead of directly using the data table entity object data structure. For example:
type ContentListItem struct {
Id uint `json:"id"` // Auto-increment ID
CategoryId uint `json:"category_id"` // Category ID
UserId uint `json:"user_id"` // User ID
Title string `json:"title"` // Title
CreatedAt *gtime.Time `json:"created_at"` // Creation time
UpdatedAt *gtime.Time `json:"updated_at"` // Update time
}
2. Must Exist Association Field Property
The With
feature is achieved by recognizing data structure associations and automatically executing multiple SQL queries, so associated fields must exist as object properties for automatic retrieval of association field values. Simply put, the fields in the with
tag must be present in the attributes of the associated object.
5. Recursive Association
If the associated model properties also have with
tags, recursive association querying will occur. The With
feature supports unlimited levels of recursive association. The following example is for reference only:
// User Detail
type UserDetail struct {
g.Meta `orm:"table:user_detail"`
Uid int `json:"uid"`
Address string `json:"address"`
}
// User Scores - Required Courses
type UserScoresRequired struct {
g.Meta `orm:"table:user_scores"`
Id int `json:"id"`
Uid int `json:"uid"`
Score int `json:"score"`
}
// User Scores - Elective Courses
type UserScoresOptional struct {
g.Meta `orm:"table:user_scores"`
Id int `json:"id"`
Uid int `json:"uid"`
Score int `json:"score"`
}
// User Scores
type UserScores struct {
g.Meta `orm:"table:user_scores"`
Id int `json:"id"`
Uid int `json:"uid"`
Required []UserScoresRequired `orm:"with:id, where:type=1"`
Optional []UserScoresOptional `orm:"with:id, where:type=2"`
}
// User Information
type User struct {
g.Meta `orm:"table:user"`
Id int `json:"id"`
Name string `json:"name"`
UserDetail *UserDetail `orm:"with:uid=id"`
UserScores []*UserScores `orm:"with:uid=id"`
}
6. Model Examples
Based on the current data tables, more model writing examples are provided for reference.
1. Nested Associated Models
type UserDetail struct {
g.Meta `orm:"table:user_detail"`
Uid int `json:"uid"`
Address string `json:"address"`
}
type UserScores struct {
g.Meta `orm:"table:user_scores"`
Id int `json:"id"`
Uid int `json:"uid"`
Score int `json:"score"`
}
type User struct {
g.Meta `orm:"table:user"`
*UserDetail `orm:"with:uid=id"`
Id int `json:"id"`
Name string `json:"name"`
UserScores []*UserScores `orm:"with:uid=id"`
}
Nested models also support nesting to allow automatic data assignment for embedded structures, such as:
type UserDetail struct {
Uid int `json:"uid"`
Address string `json:"address"`
}
type UserDetailEmbedded struct {
UserDetail
}
type UserScores struct {
Id int `json:"id"`
Uid int `json:"uid"`
Score int `json:"score"`
}
type User struct {
*UserDetailEmbedded `orm:"with:uid=id"`
Id int `json:"id"`
Name string `json:"name"`
UserScores []*UserScores `orm:"with:uid=id"`
}
2. Basic Model Nesting
type UserDetail struct {
g.Meta `orm:"table:user_detail"`
Uid int `json:"uid"`
Address string `json:"address"`
}
type UserScores struct {
g.Meta `orm:"table:user_scores"`
Id int `json:"id"`
Uid int `json:"uid"`
Score int `json:"score"`
}
type UserEmbedded struct {
Id int `json:"id"`
Name string `json:"name"`
}
type User struct {
g.Meta `orm:"table:user"`
UserEmbedded
*UserDetail `orm:"with:uid=id"`
UserScores []*UserScores `orm:"with:uid=id"`
}
3. Models Without meta
Information
The meta
structure in the model is crucial for specifying the table name. When there is no meta
information, the table name for query will automatically use the CaseSnake
name of the struct. For example, UserDetail
will automatically use the user_detail
table name, and UserScores
will automatically use the user_scores
table name.
type UserDetail struct {
Uid int `json:"uid"`
Address string `json:"address"`
}
type UserScores struct {
Id int `json:"id"`
Uid int `json:"uid"`
Score int `json:"score"`
}
type User struct {
*UserDetail `orm:"with:uid=id"`
Id int `json:"id"`
Name string `json:"name"`
UserScores []*UserScores `orm:"with:uid=id"`
}
7. Future Improvements
- Currently, the
With
feature is only implemented for query operations and does not support write or update operations.