Cluster Deployment
It’s highly recommended to deploy the GreptimeDB cluster in Kubernetes. There are the following prerequires:
Kubernetes(>=1.18)
For testing purposes, you can use Kind or Minikube to create Kubernetes.
Helm v3
kubectl
Step 1: Deploy the GreptimeDB Operator
Add the chart repository with the following commands:
helm repo add greptime https://greptimeteam.github.io/helm-charts/
helm repo update
Create the greptimedb-admin
namespace and deploy the GreptimeDB operator in the namespace:
kubectl create ns greptimedb-admin
helm upgrade --install greptimedb-operator greptime/greptimedb-operator -n greptimedb-admin
Step 2: Deploy the etcd Cluster
The GreptimeDB cluster needs the etcd cluster as the backend storage of the metasrv. We recommend using the Bitnami etcd chart to deploy the etcd cluster:
kubectl create ns metasrv-store
helm upgrade --install etcd oci://registry-1.docker.io/bitnamicharts/etcd \
--set replicaCount=3 \
--set auth.rbac.create=false \
--set auth.rbac.token.enabled=false \
-n metasrv-store
When the etcd cluster is ready, you can use the following command to check the cluster health:
kubectl -n metasrv-store \
exec etcd-0 -- etcdctl \
--endpoints etcd-0.etcd-headless.metasrv-store:2379,etcd-1.etcd-headless.metasrv-store:2379,etcd-2.etcd-headless.metasrv-store:2379 \
endpoint status
Step 3: Deploy the Kafka Cluster
We recommend using strimzi-kafka-operator to deploy the Kafka cluster in KRaft mode.
Create the kafka
namespace and install the strimzi-kafka-operator:
kubectl create namespace kafka
kubectl create -f 'https://strimzi.io/install/latest?namespace=kafka' -n kafka
When the operator is ready, use the following spec to create the Kafka cluster:
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
name: dual-role
labels:
strimzi.io/cluster: kafka-wal
spec:
replicas: 3
roles:
- controller
- broker
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 20Gi
deleteClaim: false
---
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: kafka-wal
annotations:
strimzi.io/node-pools: enabled
strimzi.io/kraft: enabled
spec:
kafka:
version: 3.7.0
metadataVersion: 3.7-IV4
listeners:
- name: plain
port: 9092
type: internal
tls: false
- name: tls
port: 9093
type: internal
tls: true
config:
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.min.isr: 2
default.replication.factor: 3
min.insync.replicas: 2
entityOperator:
topicOperator: {}
userOperator: {}
Save the spec as kafka-wal.yaml
and apply in the Kubernetes:
kubectl apply -f kafka-wal.yaml -n kafka
After the Kafka cluster is ready, check the status:
kubectl get kafka -n kafka
The expected output will be:
NAME DESIRED KAFKA REPLICAS DESIRED ZK REPLICAS READY METADATA STATE WARNINGS
kafka-wal True KRaft
Step 4: Deploy the GreptimeDB Cluster with Remote WAL Settings
Create a GreptimeDB cluster with remote WAL settings:
cat <<EOF | kubectl apply -f -
apiVersion: greptime.io/v1alpha1
kind: GreptimeDBCluster
metadata:
name: my-cluster
namespace: default
spec:
base:
main:
image: greptime/greptimedb:latest
frontend:
replicas: 1
meta:
replicas: 1
etcdEndpoints:
- "etcd.metasrv-store:2379"
datanode:
replicas: 3
remoteWal:
kafka:
brokerEndpoints:
- "kafka-wal-kafka-bootstrap.kafka:9092"
EOF
When the GreptimeDB cluster is ready, you can check the cluster status:
kubectl get gtc my-cluster -n default
The expected output will be:
NAME FRONTEND DATANODE META PHASE VERSION AGE
my-cluster 1 3 1 Running latest 5m30s
Step 5: Write and Query Data
Let’s choose to connect the cluster using the MySQL protocol. Use the kubectl to port forward 4002
traffic:
kubectl port-forward svc/my-cluster-frontend 4002:4002 -n default
Open another terminal and connect the cluster by mysql
:
mysql -h 127.0.0.1 -P 4002
Create a distributed table:
CREATE TABLE dist_table(
ts TIMESTAMP DEFAULT current_timestamp(),
n INT,
row_id INT,
PRIMARY KEY(n),
TIME INDEX (ts)
)
PARTITION ON COLUMNS (n) (
n < 5,
n >= 5 AND n < 9,
n >= 9
)
engine=mito;
Write the data:
INSERT INTO dist_table(n, row_id) VALUES (1, 1);
INSERT INTO dist_table(n, row_id) VALUES (2, 2);
INSERT INTO dist_table(n, row_id) VALUES (3, 3);
INSERT INTO dist_table(n, row_id) VALUES (4, 4);
INSERT INTO dist_table(n, row_id) VALUES (5, 5);
INSERT INTO dist_table(n, row_id) VALUES (6, 6);
INSERT INTO dist_table(n, row_id) VALUES (7, 7);
INSERT INTO dist_table(n, row_id) VALUES (8, 8);
INSERT INTO dist_table(n, row_id) VALUES (9, 9);
INSERT INTO dist_table(n, row_id) VALUES (10, 10);
INSERT INTO dist_table(n, row_id) VALUES (11, 11);
INSERT INTO dist_table(n, row_id) VALUES (12, 12);
And query the data:
SELECT * from dist_table;