SQL Dialect
tip
Starting from version 2.1, Doris can support multiple SQL dialects, such as Presto, Trino, Hive, PostgreSQL, Spark, Oracle, Clickhouse, and more. Through this feature, users can directly use the corresponding SQL dialect to query data in Doris, which facilitates users to smoothly migrate their original business to Doris.
caution
- This function is currently an experimental function. If you encounter any problems during use, you are welcome to provide feedback through the mail group, GitHub issue, etc. .
Deploy service
Download latest Doris SQL Convertor
Note:
The SQL convertor tool is based on the open source SQLGlot. For more information about SQLGlot, please refer to SQLGlot official website
On any FE node, start the service through the following command:
sh bin/start.sh
tip
This service is a stateless service and can be started and stopped at any time.
The default startup port is
5001
, and the specified port can be configured inconf/config.conf
.It is recommended to start a separate service on each FE node.
Start the Doris cluster (version 2.1 or higher)
Set the URL of the SQL Dialect Conversion Service with the following command in Doris:
MySQL> set global sql_converter_service_url = "http://127.0.0.1:5001/api/v1/convert"
tip
127.0.0.1:5001
is the deployment node IP and port of the SQL dialect conversion service.
Use SQL dialect
Currently supported dialect types include:
presto
trino
hive
spark
postgres
clickhouse
oracle
example:
- Presto
mysql> CREATE TABLE test_sqlconvert (
id int,
start_time DateTime,
value String,
arr_int ARRAY<Int>,
arr_str ARRAY<String>
) ENGINE=OLAP
DUPLICATE KEY(`id`)
COMMENT 'OLAP'
DISTRIBUTED BY HASH(`id`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
);
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO test_sqlconvert values(1, '2024-05-20 13:14:52', '2024-01-14',[1, 2, 3, 3], ['Hello', 'World']);
Query OK, 1 row affected (0.08 sec)
mysql> set sql_dialect=presto;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT cast(start_time as varchar(20)) as col1,
array_distinct(arr_int) as col2,
FILTER(arr_str, x -> x LIKE '%World%') as col3,
to_date(value,'%Y-%m-%d') as col4,
YEAR(start_time) as col5,
date_add('month', 1, start_time) as col6,
REGEXP_EXTRACT_ALL(value, '-.') as col7,
JSON_EXTRACT('{"id": "33"}', '$.id')as col8,
element_at(arr_int, 1) as col9,
date_trunc('day',start_time) as col10
FROM test_sqlconvert
where date_trunc('day',start_time)= DATE'2024-05-20'
order by id;
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | col10 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" | 1 | 2024-05-20 00:00:00 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
1 row in set (0.03 sec)
Clickhouse
mysql> set sql_dialect=clickhouse;
Query OK, 0 rows affected (0.00 sec)
mysql> select toString(start_time) as col1,
arrayCompact(arr_int) as col2,
arrayFilter(x -> x like '%World%',arr_str)as col3,
toDate(value) as col4,
toYear(start_time)as col5,
addMonths(start_time, 1)as col6,
extractAll(value, '-.')as col7,
JSONExtractString('{"id": "33"}' , 'id')as col8,
arrayElement(arr_int, 1) as col9,
date_trunc('day',start_time) as col10
FROM test_sqlconvert
where date_trunc('day',start_time)= '2024-05-20 00:00:00'
order by id;
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | col10 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" | 1 | 2024-05-20 00:00:00 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
1 row in set (0.02 sec)