Scramble String
描述
Given a string s1
, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1
and s2
of the same length, determine if s2
is a scrambled string of s1
.
分析
首先想到的是递归(即深搜),对两个string进行分割,然后比较四对字符串。代码虽然简单,但是复杂度比较高。有两种加速策略,一种是剪枝,提前返回;一种是加缓存,缓存中间结果,即memorization(翻译为记忆化搜索)。
剪枝可以五花八门,要充分观察,充分利用信息,找到能让节点提前返回的条件。例如,判断两个字符串是否互为scamble,至少要求每个字符在两个字符串中出现的次数要相等,如果不相等则返回false。
加缓存,可以用数组或HashMap。本题维数较高,用HashMap,map
和unordered_map
均可。
既然可以用记忆化搜索,这题也一定可以用动规。设状态为f[n][i][j]
,表示长度为n
,起点为s1[i]
和起点为s2[j]
两个字符串是否互为scramble,则状态转移方程为
f[n][i][j]} = (f[k][i][j] && f[n-k][i+k][j+k])
|| (f[k][i][j+n-k] && f[n-k][i+k][j])
递归
// Scramble String
// 递归,会超时,仅用来帮助理解
// 时间复杂度O(n^6),空间复杂度O(1)
class Solution {
public:
bool isScramble(const string& s1, const string& s2) {
return isScramble(s1.begin(), s1.end(), s2.begin());
}
private:
typedef string::iterator Iterator;
bool isScramble(Iterator first1, Iterator last1, Iterator first2) {
auto length = distance(first1, last1);
auto last2 = next(first2, length);
if (length == 1) return *first1 == *first2;
for (int i = 1; i < length; ++i)
if ((isScramble(first1, first1 + i, first2)
&& isScramble(first1 + i, last1, first2 + i))
|| (isScramble(first1, first1 + i, last2 - i)
&& isScramble(first1 + i, last1, first2)))
return true;
return false;
}
};
动规
// Scramble String
// 动规,时间复杂度O(n^3),空间复杂度O(n^3)
class Solution {
public:
bool isScramble(const string& s1, const string& s2) {
const int N = s1.size();
if (N != s2.size()) return false;
// f[n][i][j],表示长度为n,起点为s1[i]和
// 起点为s2[j]两个字符串是否互为scramble
bool f[N + 1][N][N];
fill_n(&f[0][0][0], (N + 1) * N * N, false);
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
f[1][i][j] = s1[i] == s2[j];
for (int n = 1; n
递归+剪枝
// Scramble String
// 递归+剪枝
// 时间复杂度O(n^6),空间复杂度O(1)
class Solution {
public:
bool isScramble(const string& s1, const string& s2) {
return isScramble(s1.begin(), s1.end(), s2.begin());
}
private:
typedef string::const_iterator Iterator;
bool isScramble(Iterator first1, Iterator last1, Iterator first2) {
auto length = distance(first1, last1);
auto last2 = next(first2, length);
if (length == 1) return *first1 == *first2;
// 剪枝,提前返回
int A[26]; // 每个字符的计数器
fill(A, A + 26, 0);
for(int i = 0; i < length; i++) A[*(first1+i)-'a']++;
for(int i = 0; i < length; i++) A[*(first2+i)-'a']--;
for(int i = 0; i < 26; i++) if (A[i] != 0) return false;
for (int i = 1; i < length; ++i)
if ((isScramble(first1, first1 + i, first2)
&& isScramble(first1 + i, last1, first2 + i))
|| (isScramble(first1, first1 + i, last2 - i)
&& isScramble(first1 + i, last1, first2)))
return true;
return false;
}
};
备忘录法
typedef string::const_iterator Iterator;
typedef tuple Key;
// 定制一个哈希函数
namespace std {
template<> struct hash {
size_t operator()(const Key & x) const {
Iterator first1, last1, first2;
tie(first1, last1, first2) = x;
int result = *first1;
result = result * 31 + *last1;
result = result * 31 + *first2;
result = result * 31 + *(next(first2, distance(first1, last1)-1));
return result;
}
};
}
// Scramble String
// 递归+unordered_map做cache,比map快
// 时间复杂度O(n^3),空间复杂度O(n^3)
class Solution {
public:
unordered_map cache;
bool isScramble(const string& s1, const string& s2) {
cache.clear();
return isScramble(s1.begin(), s1.end(), s2.begin());
}
bool isScramble(Iterator first1, Iterator last1, Iterator first2) {
auto length = distance(first1, last1);
auto last2 = next(first2, length);
if (length == 1)
return *first1 == *first2;
for (int i = 1; i < length; ++i)
if ((getOrUpdate(first1, first1 + i, first2)
&& getOrUpdate(first1 + i, last1, first2 + i))
|| (getOrUpdate(first1, first1 + i, last2 - i)
&& getOrUpdate(first1 + i, last1, first2)))
return true;
return false;
}
bool getOrUpdate(Iterator first1, Iterator last1, Iterator first2) {
auto key = make_tuple(first1, last1, first2);
auto pos = cache.find(key);
return (pos != cache.end()) ?
pos->second : (cache[key] = isScramble(first1, last1, first2));
}
};
原文: https://soulmachine.gitbooks.io/algorithm-essentials/content/cpp/dp/scramble-string.html