Triangle

描述

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

  1. [
  2. [2],
  3. [3,4],
  4. [6,5,7],
  5. [4,1,8,3]
  6. ]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

分析

设状态为f(i, j),表示从从位置(i,j)出发,路径的最小和,则状态转移方程为

f(i,j)=min{f(i+1,j),f(i+1,j+1)}+(i,j)f(i,j)=\min\left{f(i+1,j),f(i+1,j+1)\right}+(i,j)

代码

  1. // Triangle
  2. // 时间复杂度O(n^2),空间复杂度O(1)
  3. class Solution {
  4. public:
  5. int minimumTotal (vector<vector<int>>& triangle) {
  6. for (int i = triangle.size() - 2; i >= 0; --i)
  7. for (int j = 0; j < i + 1; ++j)
  8. triangle[i][j] += min(triangle[i + 1][j],
  9. triangle[i + 1][j + 1]);
  10. return triangle [0][0];
  11. }
  12. };

原文: https://soulmachine.gitbooks.io/algorithm-essentials/content/cpp/dp/triangle.html