Merge Intervals
Question
- leetcode: Merge Intervals | LeetCode OJ
- lintcode: (156) Merge Intervals
Problem Statement
Given a collection of intervals, merge all overlapping intervals.
Example
Given intervals => merged intervals:
[ [
[1, 3], [1, 6],
[2, 6], => [8, 10],
[8, 10], [15, 18]
[15, 18] ]
]
Challenge
O(n log n) time and O(1) extra space.
题解1 - 排序后
初次接触这道题可能会先对 interval 排序,随后考虑相邻两个 interval 的 end 和 start 是否交叉,若交叉则合并之。
Java
/**
* Definition of Interval:
* public class Interval {
* int start, end;
* Interval(int start, int end) {
* this.start = start;
* this.end = end;
* }
*/
class Solution {
/**
* @param intervals: Sorted interval list.
* @return: A new sorted interval list.
*/
public List<Interval> merge(List<Interval> intervals) {
if (intervals == null || intervals.isEmpty()) return intervals;
List<Interval> result = new ArrayList<Interval>();
// sort with Comparator
Collections.sort(intervals, new IntervalComparator());
Interval prev = intervals.get(0);
for (Interval interval : intervals) {
if (prev.end < interval.start) {
result.add(prev);
prev = interval;
} else {
prev.start = Math.min(prev.start, interval.start);
prev.end = Math.max(prev.end, interval.end);
}
}
result.add(prev);
return result;
}
private class IntervalComparator implements Comparator<Interval> {
public int compare(Interval a, Interval b) {
return a.start - b.start;
}
}
}
源码分析
这里因为需要比较 interval 的 start, 所以需要自己实现 Comparator 接口并覆盖 compare 方法。这里取 prev 为前一个 interval。最后不要忘记加上 prev.
复杂度分析
排序 O(n \log n), 遍历 O(n), 所以总的时间复杂度为 O(n \log n). 空间复杂度 O(1).
题解2 - 插入排序
除了首先对 intervals 排序外,还可以使用类似插入排序的方法,插入的方法在题 Insert Interval 中已详述。这里将 result 作为 intervals 传进去即可,新插入的 interval 为 intervals 遍历得到的结果。
Java
/**
* Definition of Interval:
* public class Interval {
* int start, end;
* Interval(int start, int end) {
* this.start = start;
* this.end = end;
* }
*/
class Solution {
/**
* @param intervals: Sorted interval list.
* @return: A new sorted interval list.
*/
public List<Interval> merge(List<Interval> intervals) {
if (intervals == null || intervals.isEmpty()) return intervals;
List<Interval> result = new ArrayList<Interval>();
for (Interval interval : intervals) {
result = insert(result, interval);
}
return result;
}
private List<Interval> insert(List<Interval> intervals, Interval newInterval) {
List<Interval> result = new ArrayList<Interval>();
int insertPos = 0;
for (Interval interval : intervals) {
if (newInterval.end < interval.start) {
result.add(interval);
} else if (newInterval.start > interval.end) {
result.add(interval);
insertPos++;
} else {
newInterval.start = Math.min(newInterval.start, interval.start);
newInterval.end = Math.max(newInterval.end, interval.end);
}
}
result.add(insertPos, newInterval);
return result;
}
}
源码分析
关键在 insert 的理解,result = insert(result, interval);
作为迭代生成新的 result.
复杂度分析
每次添加新的 interval 都是线性时间复杂度,故总的时间复杂度为 O(1 + 2 + … + n) = O(n^2). 空间复杂度为 O(n).
Reference
- Merge Intervals 参考程序 Java/C++/Python
- Soulmachine 的 leetcode 题解