Matrix Zigzag Traversal
Question
- lintcode: (185) Matrix Zigzag Traversal
Given a matrix of m x n elements (m rows, n columns),
return all elements of the matrix in ZigZag-order.
Example
Given a matrix:
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9,10, 11, 12]
]
return [1, 2, 5, 9, 6, 3, 4, 7, 10, 11, 8, 12]
题解
按之字形遍历矩阵,纯粹找下标规律。以题中所给范例为例,设(x, y)
为矩阵坐标,按之字形遍历有如下规律:
(0, 0)
(0, 1), (1, 0)
(2, 0), (1, 1), (0, 2)
(0, 3), (1, 2), (2, 1)
(2, 2), (1, 3)
(2, 3)
可以发现其中每一行的坐标之和为常数,坐标和为奇数时 x 递增,为偶数时 x 递减。
Java - valid matrix index second
public class Solution {
/**
* @param matrix: a matrix of integers
* @return: an array of integers
*/
public int[] printZMatrix(int[][] matrix) {
if (matrix == null || matrix.length == 0) return null;
int m = matrix.length - 1, n = matrix[0].length - 1;
int[] result = new int[(m + 1) * (n + 1)];
int index = 0;
for (int i = 0; i <= m + n; i++) {
if (i % 2 == 0) {
for (int x = i; x >= 0; x--) {
// valid matrix index
if ((x <= m) && (i - x <= n)) {
result[index] = matrix[x][i - x];
index++;
}
}
} else {
for (int x = 0; x <= i; x++) {
if ((x <= m) && (i - x <= n)) {
result[index] = matrix[x][i - x];
index++;
}
}
}
}
return result;
}
}
Java - valid matrix index first
public class Solution {
/**
* @param matrix: a matrix of integers
* @return: an array of integers
*/
public int[] printZMatrix(int[][] matrix) {
if (matrix == null || matrix.length == 0) return null;
int m = matrix.length - 1, n = matrix[0].length - 1;
int[] result = new int[(m + 1) * (n + 1)];
int index = 0;
for (int i = 0; i <= m + n; i++) {
int upperBoundx = Math.min(i, m); // x <= m
int lowerBoundx = Math.max(0, i - n); // lower bound i - x(y) <= n
int upperBoundy = Math.min(i, n); // y <= n
int lowerBoundy = Math.max(0, i - m); // i - y(x) <= m
if (i % 2 == 0) {
// column increment
for (int y = lowerBoundy; y <= upperBoundy; y++) {
result[index] = matrix[i - y][y];
index++;
}
} else {
// row increment
for (int x = lowerBoundx; x <= upperBoundx; x++) {
result[index] = matrix[x][i - x];
index++;
}
}
}
return result;
}
}
源码分析
矩阵行列和分奇偶讨论,奇数时行递增,偶数时列递增,一种是先循环再判断索引是否合法,另一种是先取的索引边界。
复杂度分析
后判断索引是否合法的实现遍历次数为 1 + 2 + … + (m + n) = O((m+n)^2), 首先确定上下界的每个元素遍历一次,时间复杂度 O(m \cdot n). 空间复杂度都是 O(1).