Print Numbers by Recursion
Question
- lintcode: (371) Print Numbers by Recursion
Print numbers from 1 to the largest number with N digits by recursion.
Example
Given N = 1, return [1,2,3,4,5,6,7,8,9].
Given N = 2, return [1,2,3,4,5,6,7,8,9,10,11,12,...,99].
Note
It's pretty easy to do recursion like:
recursion(i) {
if i > largest number:
return
results.add(i)
recursion(i + 1)
}
however this cost a lot of recursion memory as the recursion depth maybe very large.
Can you do it in another way to recursive with at most N depth?
Challenge
Do it in recursion, not for-loop.
题解
从小至大打印 N 位的数列,正如题目中所提供的 recursion(i)
, 解法简单粗暴,但问题在于 N 稍微大一点时栈就溢出了,因为递归深度太深了。能联想到的方法大概有两种,一种是用排列组合的思想去解释,把0~9当成十个不同的数(字符串表示),塞到 N 个坑位中,这个用 DFS 来解应该是可行的;另一个则是使用数学方法,依次递归递推,比如 N=2 可由 N=1递归而来,具体方法则是乘10进位加法。题中明确要求递归深度最大不超过 N, 故 DFS 方法比较危险。
Java
public class Solution {
/**
* @param n: An integer.
* return : An array storing 1 to the largest number with n digits.
*/
public List<Integer> numbersByRecursion(int n) {
List<Integer> result = new ArrayList<Integer>();
if (n <= 0) {
return result;
}
helper(n, result);
return result;
}
private void helper(int n, List<Integer> ret) {
if (n == 0) return;
helper(n - 1, ret);
// current base such as 10, 20, 30...
int base = (int)Math.pow(10, n - 1);
// get List size before for loop
int size = ret.size();
for (int i = 1; i < 10; i++) {
// add 10, 100, 1000...
ret.add(i * base);
for (int j = 0; j < size; j++) {
// add 11, 12, 13...
ret.add(ret.get(j) + base * i);
}
}
}
}
源码分析
递归步的截止条件n == 0
, 由于需要根据之前 N-1 位的数字递推,base
每次递归一层都需要乘10,size
需要在for
循环之前就确定。
复杂度分析
添加 10^n 个元素,时间复杂度 O(10^n), 空间复杂度 O(1).