Subarray Sum K

Question

Problem Statement

Given an nonnegative integer array, find a subarray where the sum of numbers is k.
Your code should return the index of the first number and the index of the last number.

Example

Given [1, 4, 20, 3, 10, 5], sum k = 33, return [2, 4].

题解1 - 哈希表

Zero Sum Subarray 的升级版,这道题求子串和为 K 的索引。首先我们可以考虑使用时间复杂度相对较低的哈希表解决。前一道题的核心约束条件为 f(i_1) - f(i_2) = 0,这道题则变为 f(i_1) - f(i_2) = k, 那么相应的 index 则为 [i_1 + 1, i_2].

C++

  1. #include <iostream>
  2. #include <vector>
  3. #include <map>
  4. using namespace std;
  5. class Solution {
  6. public:
  7. /**
  8. * @param nums: A list of integers
  9. * @return: A list of integers includes the index of the first number
  10. * and the index of the last number
  11. */
  12. vector<int> subarraySum(vector<int> nums, int k){
  13. vector<int> result;
  14. // curr_sum for the first item, index for the second item
  15. // unordered_map<int, int> hash;
  16. map<int, int> hash;
  17. hash[0] = 0;
  18. int curr_sum = 0;
  19. for (int i = 0; i != nums.size(); ++i) {
  20. curr_sum += nums[i];
  21. if (hash.find(curr_sum - k) != hash.end()) {
  22. result.push_back(hash[curr_sum - k]);
  23. result.push_back(i);
  24. return result;
  25. } else {
  26. hash[curr_sum] = i + 1;
  27. }
  28. }
  29. return result;
  30. }
  31. };
  32. int main(int argc, char *argv[])
  33. {
  34. int int_array1[] = {1, 4, 20, 3, 10, 5};
  35. int int_array2[] = {1, 4, 0, 0, 3, 10, 5};
  36. vector<int> vec_array1;
  37. vector<int> vec_array2;
  38. for (int i = 0; i != sizeof(int_array1) / sizeof(int); ++i) {
  39. vec_array1.push_back(int_array1[i]);
  40. }
  41. for (int i = 0; i != sizeof(int_array2) / sizeof(int); ++i) {
  42. vec_array2.push_back(int_array2[i]);
  43. }
  44. Solution solution;
  45. vector<int> result1 = solution.subarraySum(vec_array1, 33);
  46. vector<int> result2 = solution.subarraySum(vec_array2, 7);
  47. cout << "result1 = [" << result1[0] << " ," << result1[1] << "]" << endl;
  48. cout << "result2 = [" << result2[0] << " ," << result2[1] << "]" << endl;
  49. return 0;
  50. }

源码分析

与 Zero Sum Subarray 题的变化之处有两个地方,第一个是判断是否存在哈希表中时需要使用hash.find(curr_sum - k), 最终返回结果使用result.push_back(hash[curr_sum - k]);而不是result.push_back(hash[curr_sum]);

复杂度分析

略,见 Zero Sum Subarray

题解2 - 利用单调函数特性

不知道细心的你是否发现这道题的隐含条件——nonnegative integer array, 这也就意味着子串和函数 f(i) 为「单调不减」函数。单调函数在数学中可是重点研究的对象,那么如何将这种单调性引入本题中呢?不妨设 i_2 > i_1, 题中的解等价于寻找 f(i_2) - f(i_1) = k, 则必有 f(i_2) \geq k.

我们首先来举个实际例子帮助分析,以整数数组 {1, 4, 20, 3, 10, 5} 为例,要求子串和为33的索引值。首先我们可以构建如下表所示的子串和 f(i).

$$f(i)$$ 1 5 25 28 38
$$i$$ 0 1 2 3 4

要使部分子串和为33,则要求的第二个索引值必大于等于4,如果索引值再继续往后遍历,则所得的子串和必大于等于38,进而可以推断出索引0一定不是解。那现在怎么办咧?当然是把它扔掉啊!第一个索引值往后递推,直至小于33时又往后递推第二个索引值,于是乎这种技巧又可以认为是「两根指针」。

C++

  1. #include <iostream>
  2. #include <vector>
  3. #include <map>
  4. using namespace std;
  5. class Solution {
  6. public:
  7. /**
  8. * @param nums: A list of integers
  9. * @return: A list of integers includes the index of the first number
  10. * and the index of the last number
  11. */
  12. vector<int> subarraySum2(vector<int> &nums, int k){
  13. vector<int> result;
  14. int left_index = 0, curr_sum = 0;
  15. for (int i = 0; i != nums.size(); ++i) {
  16. while (curr_sum > k) {
  17. curr_sum -= nums[left_index];
  18. ++left_index;
  19. }
  20. if (curr_sum == k) {
  21. result.push_back(left_index);
  22. result.push_back(i - 1);
  23. return result;
  24. }
  25. curr_sum += nums[i];
  26. }
  27. return result;
  28. }
  29. };
  30. int main(int argc, char *argv[])
  31. {
  32. int int_array1[] = {1, 4, 20, 3, 10, 5};
  33. int int_array2[] = {1, 4, 0, 0, 3, 10, 5};
  34. vector<int> vec_array1;
  35. vector<int> vec_array2;
  36. for (int i = 0; i != sizeof(int_array1) / sizeof(int); ++i) {
  37. vec_array1.push_back(int_array1[i]);
  38. }
  39. for (int i = 0; i != sizeof(int_array2) / sizeof(int); ++i) {
  40. vec_array2.push_back(int_array2[i]);
  41. }
  42. Solution solution;
  43. vector<int> result1 = solution.subarraySum2(vec_array1, 33);
  44. vector<int> result2 = solution.subarraySum2(vec_array2, 7);
  45. cout << "result1 = [" << result1[0] << " ," << result1[1] << "]" << endl;
  46. cout << "result2 = [" << result2[0] << " ," << result2[1] << "]" << endl;
  47. return 0;
  48. }

源码分析

使用for循环, 在curr_sum > k时使用while递减curr_sum, 同时递增左边索引left_index, 最后累加curr_sum。如果顺序不对就会出现 bug, 原因在于判断子串和是否满足条件时在递增之后(谢谢 @glbrtchen 汇报 bug)。

复杂度分析

看似有两重循环,由于仅遍历一次数组,且索引最多挪动和数组等长的次数。故最终时间复杂度近似为 O(2n), 空间复杂度为 O(1).

Reference