Previous Permuation

Question

Problem Statement

Given a list of integers, which denote a permutation.

Find the previous permutation in ascending order.

Example

For [1,3,2,3], the previous permutation is [1,2,3,3]

For [1,2,3,4], the previous permutation is [4,3,2,1]

Note

The list may contains duplicate integers.

题解

和前一题 Next Permutation 非常类似,这里找上一个排列,仍然使用字典序算法,大致步骤如下:

  1. 从后往前寻找索引满足 a[k] > a[k + 1], 如果此条件不满足,则说明已遍历到最后一个。
  2. 从后往前遍历,找到第一个比a[k]小的数a[l], 即a[k] > a[l].
  3. 交换a[k]a[l].
  4. 反转k + 1 ~ n之间的元素。

为何不从前往后呢?因为只有从后往前才能保证得到的是相邻的排列,可以举个实际例子自行分析。

Python

  1. class Solution:
  2. # @param num : a list of integer
  3. # @return : a list of integer
  4. def previousPermuation(self, num):
  5. if num is None or len(num) <= 1:
  6. return num
  7. # step1: find nums[i] > nums[i + 1], Loop backwards
  8. i = 0
  9. for i in xrange(len(num) - 2, -1, -1):
  10. if num[i] > num[i + 1]:
  11. break
  12. elif i == 0:
  13. # reverse nums if reach maximum
  14. num = num[::-1]
  15. return num
  16. # step2: find nums[i] > nums[j], Loop backwards
  17. j = 0
  18. for j in xrange(len(num) - 1, i, -1):
  19. if num[i] > num[j]:
  20. break
  21. # step3: swap betwenn nums[i] and nums[j]
  22. num[i], num[j] = num[j], num[i]
  23. # step4: reverse between [i + 1, n - 1]
  24. num[i + 1:len(num)] = num[len(num) - 1:i:-1]
  25. return num

C++

  1. class Solution {
  2. public:
  3. /**
  4. * @param nums: An array of integers
  5. * @return: An array of integers that's previous permuation
  6. */
  7. vector<int> previousPermuation(vector<int> &nums) {
  8. if (nums.empty() || nums.size() <= 1) {
  9. return nums;
  10. }
  11. // step1: find nums[i] > nums[i + 1]
  12. int i = 0;
  13. for (i = nums.size() - 2; i >= 0; --i) {
  14. if (nums[i] > nums[i + 1]) {
  15. break;
  16. } else if (0 == i) {
  17. // reverse nums if reach minimum
  18. reverse(nums, 0, nums.size() - 1);
  19. return nums;
  20. }
  21. }
  22. // step2: find nums[i] > nums[j]
  23. int j = 0;
  24. for (j = nums.size() - 1; j > i; --j) {
  25. if (nums[i] > nums[j]) break;
  26. }
  27. // step3: swap betwenn nums[i] and nums[j]
  28. int temp = nums[i];
  29. nums[i] = nums[j];
  30. nums[j] = temp;
  31. // step4: reverse between [i + 1, n - 1]
  32. reverse(nums, i + 1, nums.size() - 1);
  33. return nums;
  34. }
  35. private:
  36. void reverse(vector<int>& nums, int start, int end) {
  37. for (int i = start, j = end; i < j; ++i, --j) {
  38. int temp = nums[i];
  39. nums[i] = nums[j];
  40. nums[j] = temp;
  41. }
  42. }
  43. };

Java

  1. public class Solution {
  2. /**
  3. * @param nums: A list of integers
  4. * @return: A list of integers that's previous permuation
  5. */
  6. public ArrayList<Integer> previousPermuation(ArrayList<Integer> nums) {
  7. ArrayList<Integer> perm = new ArrayList<Integer>(nums);
  8. if (nums == null || nums.size() == 0) return perm;
  9. // step1: search the first num[k] > num[k+1] backward
  10. int k = -1;
  11. for (int i = perm.size() - 2; i >= 0; i--) {
  12. if (perm.get(i) > perm.get(i + 1)) {
  13. k = i;
  14. break;
  15. }
  16. }
  17. // if current rank is the smallest, reverse it to largest, return
  18. if (k == -1) {
  19. reverse(perm, 0, perm.size() - 1);
  20. return perm;
  21. }
  22. // step2: search the first perm[k] > perm[l] backward
  23. int l = perm.size() - 1;
  24. while (l > k && perm.get(l) >= perm.get(k)) {
  25. l--;
  26. }
  27. // step3: swap perm[k] with perm[l]
  28. Collections.swap(perm, k, l);
  29. // step4: reverse between k+1 and perm.length-1;
  30. reverse(perm, k + 1, perm.size() - 1);
  31. return perm;
  32. }
  33. private void reverse(List<Integer> nums, int lb, int ub) {
  34. for (int i = lb, j = ub; i < j; i++, j--) {
  35. Collections.swap(nums, i, j);
  36. }
  37. }
  38. }

源码分析

和 Permutation 一小节类似,这里只需要注意在step 1中i == -1时需要反转之以获得最大的序列。对于有重复元素,只要在 step1和 step2中判断元素大小时不取等号即可。

复杂度分析

最坏情况下,遍历两次原数组,反转一次数组,时间复杂度为 O(n), 使用了 temp 临时变量,空间复杂度可认为是 O(1).