Permutation Sequence

Question

Problem Statement

Given n and k, return the k-th permutation sequence.

Example

For n = 3, all permutations are listed as follows:

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

If k = 4, the fourth permutation is "231"

Note

n will be between 1 and 9 inclusive.

Challenge

O(n*k) in time complexity is easy, can you do it in O(n^2) or less?

题解

和题 Permutation Index 正好相反,这里给定第几个排列的相对排名,输出排列值。和不同进制之间的转化类似,这里的『进制』为1!, 2!..., 以n=3, k=4为例,我们从高位到低位转化,直觉应该是用 k/(n-1)!, 但以 n=3,k=5 和 n=3,k=6 代入计算后发现边界处理起来不太方便,故我们可以尝试将 k 减1进行运算,后面的基准也随之变化。第一个数可以通过(k-1)/(n-1)!进行计算,那么第二个数呢?联想不同进制数之间的转化,我们可以通过求模运算求得下一个数的k-1, 那么下一个数可通过(k2 - 1)/(n-2)!求得,这里不理解的可以通过进制转换类比进行理解。和减掉相应的阶乘值是等价的。

Python

  1. class Solution:
  2. """
  3. @param n: n
  4. @param k: the k-th permutation
  5. @return: a string, the k-th permutation
  6. """
  7. def getPermutation(self, n, k):
  8. # generate factorial list
  9. factorial = [1]
  10. for i in xrange(1, n + 1):
  11. factorial.append(factorial[-1] * i)
  12. nums = range(1, n + 1)
  13. perm = []
  14. for i in xrange(n):
  15. rank = (k - 1) / factorial[n - i - 1]
  16. k = (k - 1) % factorial[n - i - 1] + 1
  17. # append and remove nums[rank]
  18. perm.append(nums[rank])
  19. nums.remove(nums[rank])
  20. # combine digits
  21. return "".join([str(digit) for digit in perm])

C++

  1. class Solution {
  2. public:
  3. /**
  4. * @param n: n
  5. * @param k: the kth permutation
  6. * @return: return the k-th permutation
  7. */
  8. string getPermutation(int n, int k) {
  9. // generate factorial list
  10. vector<int> factorial = vector<int>(n + 1, 1);
  11. for (int i = 1; i < n + 1; ++i) {
  12. factorial[i] = factorial[i - 1] * i;
  13. }
  14. // generate digits ranging from 1 to n
  15. vector<int> nums;
  16. for (int i = 1; i < n + 1; ++i) {
  17. nums.push_back(i);
  18. }
  19. vector<int> perm;
  20. for (int i = 0; i < n; ++i) {
  21. int rank = (k - 1) / factorial[n - i - 1];
  22. k = (k - 1) % factorial[n - i - 1] + 1;
  23. // append and remove nums[rank]
  24. perm.push_back(nums[rank]);
  25. nums.erase(std::remove(nums.begin(), nums.end(), nums[rank]), nums.end());
  26. }
  27. // transform a vector<int> to a string
  28. std::stringstream result;
  29. std::copy(perm.begin(), perm.end(), std::ostream_iterator<int>(result, ""));
  30. return result.str();
  31. }
  32. };

Java

  1. class Solution {
  2. /**
  3. * @param n: n
  4. * @param k: the kth permutation
  5. * @return: return the k-th permutation
  6. */
  7. public String getPermutation(int n, int k) {
  8. if (n <= 0 && k <= 0) return "";
  9. int fact = 1;
  10. // generate nums 1 to n
  11. List<Integer> nums = new ArrayList<Integer>();
  12. for (int i = 1; i <= n; i++) {
  13. fact *= i;
  14. nums.add(i);
  15. }
  16. // get the permutation digit
  17. StringBuilder sb = new StringBuilder();
  18. for (int i = n; i >= 1; i--) {
  19. fact /= i;
  20. // take care of rank and k
  21. int rank = (k - 1) / fact;
  22. k = (k - 1) % fact + 1;
  23. // ajust the mapping of rank to num
  24. sb.append(nums.get(rank));
  25. nums.remove(rank);
  26. }
  27. return sb.toString();
  28. }
  29. }

源码分析

源码结构分为三步走,

  1. 建阶乘数组
  2. 生成排列数字数组
  3. 从高位到低位计算排列数值

复杂度分析

几个 for 循环,时间复杂度为 O(n), 用了与 n 等长的一些数组,空间复杂度为 O(n).

Reference