Edit Distance

  • tags: [DP_Two_Sequence]

Question

  1. Given two words word1 and word2, find the minimum number of steps required
  2. to convert word1 to word2. (each operation is counted as 1 step.)
  3. You have the following 3 operations permitted on a word:
  4. Insert a character
  5. Delete a character
  6. Replace a character
  7. Example
  8. Given word1 = "mart" and word2 = "karma", return 3.

题解1 - 双序列动态规划

两个字符串比较,求最值,直接看似乎并不能直接找出解决方案,这时往往需要使用动态规划的思想寻找递推关系。使用双序列动态规划的通用做法,不妨定义f[i][j]为字符串1的前i个字符和字符串2的前j个字符的编辑距离,那么接下来寻找其递推关系。增删操作互为逆操作,即增或者删产生的步数都是一样的。故初始化时容易知道f[0][j] = j, f[i][0] = i, 接下来探讨f[i][j]f[i - 1][j - 1]的关系,和 LCS 问题类似,我们分两种情况讨论,即word1[i] == word2[j] 与否,第一种相等的情况有:

  1. i == j, 且有word1[i] == word2[j], 则由f[i - 1][j - 1] -> f[i][j] 不增加任何操作,有f[i][j] = f[i - 1][j - 1].
  2. i != j, 由于字符数不等,肯定需要增/删一个字符,但是增删 word1 还是 word2 是不知道的,故可取其中编辑距离的较小值,即f[i][j] = 1 + min{f[i - 1][j], f[i][j - 1]}.

第二种不等的情况有:

  1. i == j, 有f[i][j] = 1 + f[i - 1][j - 1].
  2. i != j, 由于字符数不等,肯定需要增/删一个字符,但是增删 word1 还是 word2 是不知道的,故可取其中编辑距离的较小值,即f[i][j] = 1 + min{f[i - 1][j], f[i][j - 1]}.

最后返回f[len(word1)][len(word2)]

Python

  1. class Solution:
  2. # @param word1 & word2: Two string.
  3. # @return: The minimum number of steps.
  4. def minDistance(self, word1, word2):
  5. len1, len2 = 0, 0
  6. if word1:
  7. len1 = len(word1)
  8. if word2:
  9. len2 = len(word2)
  10. if not word1 or not word2:
  11. return max(len1, len2)
  12. f = [[i + j for i in xrange(1 + len2)] for j in xrange(1 + len1)]
  13. for i in xrange(1, 1 + len1):
  14. for j in xrange(1, 1 + len2):
  15. if word1[i - 1] == word2[j - 1]:
  16. f[i][j] = min(f[i - 1][j - 1], 1 + f[i - 1][j], 1 + f[i][j - 1])
  17. else:
  18. f[i][j] = 1 + min(f[i - 1][j - 1], f[i - 1][j], f[i][j - 1])
  19. return f[len1][len2]

C++

  1. class Solution {
  2. public:
  3. /**
  4. * @param word1 & word2: Two string.
  5. * @return: The minimum number of steps.
  6. */
  7. int fistance(string word1, string word2) {
  8. if (word1.empty() || word2.empty()) {
  9. return max(word1.size(), word2.size());
  10. }
  11. int len1 = word1.size();
  12. int len2 = word2.size();
  13. vector<vector<int> > f = \
  14. vector<vector<int> >(1 + len1, vector<int>(1 + len2, 0));
  15. for (int i = 0; i <= len1; ++i) {
  16. f[i][0] = i;
  17. }
  18. for (int i = 0; i <= len2; ++i) {
  19. f[0][i] = i;
  20. }
  21. for (int i = 1; i <= len1; ++i) {
  22. for (int j = 1; j <= len2; ++j) {
  23. if (word1[i - 1] == word2[j - 1]) {
  24. f[i][j] = min(f[i - 1][j - 1], 1 + f[i - 1][j]);
  25. f[i][j] = min(f[i][j], 1 + f[i][j - 1]);
  26. } else {
  27. f[i][j] = min(f[i - 1][j - 1], f[i - 1][j]);
  28. f[i][j] = 1 + min(f[i][j], f[i][j - 1]);
  29. }
  30. }
  31. }
  32. return f[len1][len2];
  33. }
  34. };

Java

  1. public class Solution {
  2. public int minDistance(String word1, String word2) {
  3. int len1 = 0, len2 = 0;
  4. if (word1 != null && word2 != null) {
  5. len1 = word1.length();
  6. len2 = word2.length();
  7. }
  8. if (word1 == null || word2 == null) {
  9. return Math.max(len1, len2);
  10. }
  11. int[][] f = new int[1 + len1][1 + len2];
  12. for (int i = 0; i <= len1; i++) {
  13. f[i][0] = i;
  14. }
  15. for (int i = 0; i <= len2; i++) {
  16. f[0][i] = i;
  17. }
  18. for (int i = 1; i <= len1; i++) {
  19. for (int j = 1; j <= len2; j++) {
  20. if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
  21. f[i][j] = Math.min(f[i - 1][j - 1], 1 + f[i - 1][j]);
  22. f[i][j] = Math.min(f[i][j], 1 + f[i][j - 1]);
  23. } else {
  24. f[i][j] = Math.min(f[i - 1][j - 1], f[i - 1][j]);
  25. f[i][j] = 1 + Math.min(f[i][j], f[i][j - 1]);
  26. }
  27. }
  28. }
  29. return f[len1][len2];
  30. }
  31. }

源码解析

  1. 边界处理
  2. 初始化二维矩阵(Python 中初始化时 list 中 len2 在前,len1 在后)
  3. i, j 从1开始计数,比较 word1 和 word2 时注意下标
  4. 返回f[len1][len2]

复杂度分析

两重 for 循环,时间复杂度为 O(len1 \cdot len2). 使用二维矩阵,空间复杂度为 O(len1 \cdot len2).