Binary Tree Level Order Traversal
Question
- leetcode: Binary Tree Level Order Traversal | LeetCode OJ
- lintcode: (69) Binary Tree Level Order Traversal
Problem Statement
Given a binary tree, return the level order traversal of its nodes’ values.
(ie, from left to right, level by level).
Example
Given binary tree {3,9,20,#,#,15,7}
,
3
/ \
9 20
/ \
15 7
return its level order traversal as:
[
[3],
[9,20],
[15,7]
]
Challenge
Challenge 1: Using only 1 queue to implement it.
Challenge 2: Use DFS algorithm to do it.
题解 - 使用队列
此题为广搜的基础题,使用一个队列保存每层的节点即可。出队和将子节点入队的实现使用 for 循环,将每一轮的节点输出。
C++
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
/**
* @param root: The root of binary tree.
* @return: Level order a list of lists of integer
*/
public:
vector<vector<int> > levelOrder(TreeNode *root) {
vector<vector<int> > result;
if (NULL == root) {
return result;
}
queue<TreeNode *> q;
q.push(root);
while (!q.empty()) {
vector<int> list;
int size = q.size(); // keep the queue size first
for (int i = 0; i != size; ++i) {
TreeNode * node = q.front();
q.pop();
list.push_back(node->val);
if (node->left) {
q.push(node->left);
}
if (node->right) {
q.push(node->right);
}
}
result.push_back(list);
}
return result;
}
};
Java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if (root == null) return result;
Queue<TreeNode> q = new LinkedList<TreeNode>();
q.offer(root);
while (!q.isEmpty()) {
List<Integer> list = new ArrayList<Integer>();
int qSize = q.size();
for (int i = 0; i < qSize; i++) {
TreeNode node = q.poll();
list.add(node.val);
// push child node into queue
if (node.left != null) q.offer(node.left);
if (node.right != null) q.offer(node.right);
}
result.add(new ArrayList<Integer>(list));
}
return result;
}
}
源码分析
- 异常,还是异常
- 使用STL的
queue
数据结构,将root
添加进队列 - 遍历当前层所有节点,注意需要先保存队列大小,因为在入队出队时队列大小会变化
list
保存每层节点的值,每次使用均要初始化
复杂度分析
使用辅助队列,空间复杂度 O(n), 时间复杂度 O(n).