Insert Node in a Binary Search Tree

Question

  1. Given a binary search tree and a new tree node, insert the node into the tree. You should keep the tree still be a valid binary search tree.
  2. Example
  3. Given binary search tree as follow:
  4. 2
  5. / \
  6. 1 4
  7. /
  8. 3
  9. after Insert node 6, the tree should be:
  10. 2
  11. / \
  12. 1 4
  13. / \
  14. 3 6
  15. Challenge
  16. Do it without recursion

题解 - 递归

二叉树的题使用递归自然是最好理解的,代码也简洁易懂,缺点就是递归调用时栈空间容易溢出,故实际实现中一般使用迭代替代递归,性能更佳嘛。不过迭代的缺点就是代码量稍(很)大,逻辑也可能不是那么好懂。

既然确定使用递归,那么接下来就应该考虑具体的实现问题了。在递归的具体实现中,主要考虑如下两点:

  1. 基本条件/终止条件 - 返回值需斟酌。
  2. 递归步/条件递归 - 能使原始问题收敛。

首先来找找递归步,根据二叉查找树的定义,若插入节点的值若大于当前节点的值,则继续与当前节点的右子树的值进行比较;反之则继续与当前节点的左子树的值进行比较。题目的要求是返回最终二叉搜索树的根节点,从以上递归步的描述中似乎还难以对应到实际代码,这时不妨分析下终止条件。

有了递归步,终止条件也就水到渠成了,若当前节点为空时,即返回结果。问题是——返回什么结果?当前节点为空时,说明应该将「插入节点」插入到上一个遍历节点的左子节点或右子节点。对应到程序代码中即为root->right = node或者root->left = node. 也就是说递归步使用root->right/left = func(...)即可。

C++ Recursion

  1. /**
  2. * forked from http://www.jiuzhang.com/solutions/insert-node-in-binary-search-tree/
  3. * Definition of TreeNode:
  4. * class TreeNode {
  5. * public:
  6. * int val;
  7. * TreeNode *left, *right;
  8. * TreeNode(int val) {
  9. * this->val = val;
  10. * this->left = this->right = NULL;
  11. * }
  12. * }
  13. */
  14. class Solution {
  15. public:
  16. /**
  17. * @param root: The root of the binary search tree.
  18. * @param node: insert this node into the binary search tree
  19. * @return: The root of the new binary search tree.
  20. */
  21. TreeNode* insertNode(TreeNode* root, TreeNode* node) {
  22. if (NULL == root) {
  23. return node;
  24. }
  25. if (node->val <= root->val) {
  26. root->left = insertNode(root->left, node);
  27. } else {
  28. root->right = insertNode(root->right, node);
  29. }
  30. return root;
  31. }
  32. };

Java Recursion

  1. public class Solution {
  2. /**
  3. * @param root: The root of the binary search tree.
  4. * @param node: insert this node into the binary search tree
  5. * @return: The root of the new binary search tree.
  6. */
  7. public TreeNode insertNode(TreeNode root, TreeNode node) {
  8. if (root == null) {
  9. return node;
  10. }
  11. if (root.val > node.val) {
  12. root.left = insertNode(root.left, node);
  13. } else {
  14. root.right = insertNode(root.right, node);
  15. }
  16. return root;
  17. }
  18. }

题解 - 迭代

看过了以上递归版的题解,对于这个题来说,将递归转化为迭代的思路也是非常清晰易懂的。迭代比较当前节点的值和插入节点的值,到了二叉树的最后一层时选择是链接至左子结点还是右子节点。

C++

  1. /**
  2. * Definition of TreeNode:
  3. * class TreeNode {
  4. * public:
  5. * int val;
  6. * TreeNode *left, *right;
  7. * TreeNode(int val) {
  8. * this->val = val;
  9. * this->left = this->right = NULL;
  10. * }
  11. * }
  12. */
  13. class Solution {
  14. public:
  15. /**
  16. * @param root: The root of the binary search tree.
  17. * @param node: insert this node into the binary search tree
  18. * @return: The root of the new binary search tree.
  19. */
  20. TreeNode* insertNode(TreeNode* root, TreeNode* node) {
  21. if (NULL == root) {
  22. return node;
  23. }
  24. TreeNode* tempNode = root;
  25. while (NULL != tempNode) {
  26. if (node->val <= tempNode->val) {
  27. if (NULL == tempNode->left) {
  28. tempNode->left = node;
  29. return root;
  30. }
  31. tempNode = tempNode->left;
  32. } else {
  33. if (NULL == tempNode->right) {
  34. tempNode->right = node;
  35. return root;
  36. }
  37. tempNode = tempNode->right;
  38. }
  39. }
  40. return root;
  41. }
  42. };

源码分析

NULL == tempNode->right或者NULL == tempNode->left时需要在链接完node后立即返回root,避免死循环。

Java Iterative

  1. public class Solution {
  2. /**
  3. * @param root: The root of the binary search tree.
  4. * @param node: insert this node into the binary search tree
  5. * @return: The root of the new binary search tree.
  6. */
  7. public TreeNode insertNode(TreeNode root, TreeNode node) {
  8. // write your code here
  9. if (root == null) return node;
  10. if (node == null) return root;
  11. TreeNode rootcopy = root;
  12. while (root != null) {
  13. if (root.val <= node.val && root.right == null) {
  14. root.right = node;
  15. break;
  16. }
  17. else if (root.val > node.val && root.left == null) {
  18. root.left = node;
  19. break;
  20. }
  21. else if(root.val <= node.val) root = root.right;
  22. else root = root.left;
  23. }
  24. return rootcopy;
  25. }
  26. }