Search for a Range
Question
- leetcode: Search for a Range | LeetCode OJ
- lintcode: (61) Search for a Range
Problem Statement
Given a sorted array of n integers, find the starting and ending position of
a given target value.
If the target is not found in the array, return [-1, -1]
.
Example
Given [5, 7, 7, 8, 8, 10]
and target value 8
, return [3, 4]
.
Challenge
O(log n) time.
题解
Python
first/last position 结合。
class Solution:
"""
@param A : a list of integers
@param target : an integer to be searched
@return : a list of length 2, [index1, index2]
"""
def searchRange(self, A, target):
ret = [-1, -1]
if not A:
return ret
# find the first position of target
st, ed = 0, len(A) - 1
while st + 1 < ed:
mid = (st + ed) / 2
if A[mid] == target:
ed = mid
elif A[mid] < target:
st = mid
else:
ed = mid
if A[st] == target:
ret[0] = st
elif A[ed] == target:
ret[0] = ed
# find the last position of target
st, ed = 0, len(A) - 1
while st + 1 < ed:
mid = (st + ed) / 2
if A[mid] == target:
st = mid
elif A[mid] < target:
st = mid
else:
ed = mid
if A[ed] == target:
ret[1] = ed
elif A[st] == target:
ret[1] = st
return ret
C++
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
vector<int> result = {-1, -1};
if (nums.empty()) return result;
int lb = -1, ub = nums.size();
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (nums[mid] < target) lb = mid;
else ub = mid;
}
if ((ub < nums.size()) && (nums[ub] == target)) result[0] = ub;
else return result;
ub = nums.size();
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (nums[mid] > target) ub = mid;
else lb = mid;
}
result[1] = ub - 1;
return result;
}
};
Java
lower/upper bound 的结合,做两次搜索即可。
public class Solution {
/**
*@param A : an integer sorted array
*@param target : an integer to be inserted
*return : a list of length 2, [index1, index2]
*/
public int[] searchRange(int[] A, int target) {
int[] result = new int[]{-1, -1};
if (A == null || A.length == 0) return result;
int lb = -1, ub = A.length;
// lower bound
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (A[mid] < target) {
lb = mid;
} else {
ub = mid;
}
}
// whether A[lb + 1] == target, check lb + 1 first
if ((lb + 1 < A.length) && (A[lb + 1] == target)) {
result[0] = lb + 1;
} else {
result[0] = -1;
result[1] = -1;
// target is not in the array
return result;
}
// upper bound, since ub >= lb, we do not reset lb
ub = A.length;
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (A[mid] > target) {
ub = mid;
} else {
lb = mid;
}
}
// target must exist in the array
result[1] = ub - 1;
return result;
}
}
源码分析
- 首先对输入做异常处理,数组为空或者长度为0
- 分 lower/upper bound 两次搜索,注意如果在 lower bound 阶段未找到目标值时,upper bound 也一定找不到。
- 取
A[lb + 1]
时一定要注意判断索引是否越界!
复杂度分析
两次二分搜索,时间复杂度仍为 O(\log n).
Reference
- Binary Search – topcoder - 思路更清晰的 find first 模板,find last k 可转化为 find first
k + 1
谢谢 @mckelvin 同学推荐