Search a 2D Matrix

Question

Problem Statement

Write an efficient algorithm that searches for a value in an m x n matrix.

This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

Example

Consider the following matrix:

  1. [
  2. [1, 3, 5, 7],
  3. [10, 11, 16, 20],
  4. [23, 30, 34, 50]
  5. ]

Given target = 3, return true.

Challenge

O(log(n) + log(m)) time

题解 - 一次二分搜索 V.S. 两次二分搜索

  • 一次二分搜索 - 由于矩阵按升序排列,因此可将二维矩阵转换为一维问题。对原始的二分搜索进行适当改变即可(求行和列)。时间复杂度为 $$O(log(mn))=O(log(m)+log(n))$$
  • 两次二分搜索 - 先按行再按列进行搜索,即两次二分搜索。时间复杂度相同。

一次二分搜索

Python

  1. class Solution:
  2. def search_matrix(self, matrix, target):
  3. # Find the first position of target
  4. if not matrix or not matrix[0]:
  5. return False
  6. m, n = len(matrix), len(matrix[0])
  7. st, ed = 0, m * n - 1
  8. while st + 1 < ed:
  9. mid = (st + ed) / 2
  10. if matrix[mid / n][mid % n] == target:
  11. return True
  12. elif matrix[mid / n][mid % n] < target:
  13. st = mid
  14. else:
  15. ed = mid
  16. return matrix[st / n][st % n] == target or \
  17. matrix[ed / n][ed % n] == target

C++

  1. class Solution {
  2. public:
  3. bool searchMatrix(vector<vector<int>>& matrix, int target) {
  4. if (matrix.empty() || matrix[0].empty()) return false;
  5. int ROW = matrix.size(), COL = matrix[0].size();
  6. int lb = -1, ub = ROW * COL;
  7. while (lb + 1 < ub) {
  8. int mid = lb + (ub - lb) / 2;
  9. if (matrix[mid / COL][mid % COL] < target) {
  10. lb = mid;
  11. } else {
  12. if (matrix[mid / COL][mid % COL] == target) return true;
  13. ub = mid;
  14. }
  15. }
  16. return false;
  17. }
  18. };

Java

lower bound 二分模板。

  1. public class Solution {
  2. /**
  3. * @param matrix, a list of lists of integers
  4. * @param target, an integer
  5. * @return a boolean, indicate whether matrix contains target
  6. */
  7. public boolean searchMatrix(int[][] matrix, int target) {
  8. if (matrix == null || matrix.length == 0 || matrix[0] == null) {
  9. return false;
  10. }
  11. int ROW = matrix.length, COL = matrix[0].length;
  12. int lb = -1, ub = ROW * COL;
  13. while (lb + 1 < ub) {
  14. int mid = lb + (ub - lb) / 2;
  15. if (matrix[mid / COL][mid % COL] < target) {
  16. lb = mid;
  17. } else {
  18. if (matrix[mid / COL][mid % COL] == target) {
  19. return true;
  20. }
  21. ub = mid;
  22. }
  23. }
  24. return false;
  25. }
  26. }

源码分析

仍然可以使用经典的二分搜索模板(lower bound),注意下标的赋值即可。

  1. 首先对输入做异常处理,不仅要考虑到matrix为null,还要考虑到matrix[0]的长度也为0。
  2. 由于 lb 的变化处一定小于 target, 故在 else 中判断。

复杂度分析

二分搜索,O(\log mn).

两次二分法

Python

  1. class Solution:
  2. def search_matrix(self, matrix, target):
  3. if not matrix or not matrix[0]:
  4. return False
  5. # first pos >= target
  6. st, ed = 0, len(matrix) - 1
  7. while st + 1 < ed:
  8. mid = (st + ed) / 2
  9. if matrix[mid][-1] == target:
  10. st = mid
  11. elif matrix[mid][-1] < target:
  12. st = mid
  13. else:
  14. ed = mid
  15. if matrix[st][-1] >= target:
  16. row = matrix[st]
  17. elif matrix[ed][-1] >= target:
  18. row = matrix[ed]
  19. else:
  20. return False
  21. # binary search in row
  22. st, ed = 0, len(row) - 1
  23. while st + 1 < ed:
  24. mid = (st + ed) / 2
  25. if row[mid] == target:
  26. return True
  27. elif row[mid] < target:
  28. st = mid
  29. else:
  30. ed = mid
  31. return row[st] == target or row[ed] == target

源码分析

  1. 先找到first position的行, 这一行的最后一个元素大于等于target
  2. 再在这一行中找target

复杂度分析

二分搜索, O(\log m + \log n)