Project Layout
See Standard Go Project Layout for additional background information.
More about naming and organizing packages as well as other code structure recommendations:
- GopherCon EU 2018: Peter Bourgon - Best Practices for Industrial Programming
- GopherCon Russia 2018: Ashley McNamara + Brian Ketelsen - Go best practices.
- GopherCon 2017: Edward Muller - Go Anti-Patterns
- GopherCon 2018: Kat Zien - How Do You Structure Your Go Apps
A Chinese Post about Package-Oriented-Design guidelines and Architecture layer
Directories
/cmd
Main applications for this project.
The directory name for each application should match the name of the executable you want to have (e.g., /cmd/myapp
).
Don’t put a lot of code in the application directory. If you think the code can be imported and used in other projects, then it should live in the /pkg
directory. If the code is not reusable or if you don’t want others to reuse it, put that code in the /internal
directory. You’ll be surprised what others will do, so be explicit about your intentions!
It’s common to have a small main
function that imports and invokes the code from the /internal
and /pkg
directories and nothing else.
/internal
Private application and library code. This is the code you don’t want others importing in their applications or libraries. Note that this layout pattern is enforced by the Go compiler itself. See the Go 1.4 release notes for more details. Note that you are not limited to the top level internal
directory. You can have more than one internal
directory at any level of your project tree.
You can optionally add a bit of extra structure to your internal packages to separate your shared and non-shared internal code. It’s not required (especially for smaller projects), but it’s nice to have visual clues showing the intended package use. Your actual application code can go in the /internal/app
directory (e.g., /internal/app/myapp
) and the code shared by those apps in the /internal/pkg
directory (e.g., /internal/pkg/myprivlib
).
/pkg
Library code that’s ok to use by external applications (e.g., /pkg/mypubliclib
). Other projects will import these libraries expecting them to work, so think twice before you put something here :-) Note that the internal
directory is a better way to ensure your private packages are not importable because it’s enforced by Go. The /pkg
directory is still a good way to explicitly communicate that the code in that directory is safe for use by others. The I’ll take pkg over internal blog post by Travis Jeffery provides a good overview of the pkg
and internal
directories and when it might make sense to use them.
It’s also a way to group Go code in one place when your root directory contains lots of non-Go components and directories making it easier to run various Go tools (as mentioned in these talks: Best Practices for Industrial Programming from GopherCon EU 2018, GopherCon 2018: Kat Zien - How Do You Structure Your Go Apps and GoLab 2018 - Massimiliano Pippi - Project layout patterns in Go).
It’s ok not to use it if your app project is really small and where an extra level of nesting doesn’t add much value (unless you really want to :-)). Think about it when it’s getting big enough and your root directory gets pretty busy (especially if you have a lot of non-Go app components).
The pkg
directory origins: The old Go source code used to use pkg
for its packages and then various Go projects in the community started copying the pattern (see this Brad Fitzpatrick’s tweet for more context).
/vendor
Application dependencies (managed manually or by your favorite dependency management tool like the new built-in Go Modules feature). The go mod vendor
command will create the /vendor
directory for you. Note that you might need to add the -mod=vendor
flag to your go build
command if you are not using Go 1.14 where it’s on by default.
Don’t commit your application dependencies if you are building a library.
Note that since 1.13 Go also enabled the module proxy feature (using https://proxy.golang.org as their module proxy server by default). Read more about it here to see if it fits all of your requirements and constraints. If it does, then you won’t need the vendor
directory at all.
Common Application Directories
/hack
The /hack directory contains many scripts that ensure continuous development of DevStream.
/build
Packaging and Continuous Integration.
Put your cloud (AMI), container (Docker), OS (deb, rpm, pkg) package configurations and scripts in the /build/package
directory.
Put your CI (travis, circle, drone) configurations and scripts in the /build/ci
directory. Note that some of the CI tools (e.g., Travis CI) are very picky about the location of their config files. Try putting the config files in the /build/ci
directory linking them to the location where the CI tools expect them (when possible).
/test
Additional external test apps and test data. Feel free to structure the /test
directory anyway you want. For bigger projects it makes sense to have a data subdirectory. For example, you can have /test/data
or /test/testdata
if you need Go to ignore what’s in that directory. Note that Go will also ignore directories or files that begin with “.” or “_“, so you have more flexibility in terms of how you name your test data directory.
Other Directories
/docs
Design and user documents (in addition to your godoc generated documentation).
/examples
Examples for your applications and/or public libraries.
Directories You Shouldn’t Have
/src
Some Go projects do have a src
folder, but it usually happens when the devs came from the Java world where it’s a common pattern. If you can help yourself try not to adopt this Java pattern. You really don’t want your Go code or Go projects to look like Java :-)
Don’t confuse the project level /src
directory with the /src
directory Go uses for its workspaces as described in How to Write Go Code. The $GOPATH
environment variable points to your (current) workspace (by default it points to $HOME/go
on non-windows systems). This workspace includes the top level /pkg
, /bin
and /src
directories. Your actual project ends up being a sub-directory under /src
, so if you have the /src
directory in your project the project path will look like this: /some/path/to/workspace/src/your_project/src/your_code.go
. Note that with Go 1.11 it’s possible to have your project outside of your GOPATH
, but it still doesn’t mean it’s a good idea to use this layout pattern.
Badges
Go Report Card - It will scan your code with
gofmt
,go vet
,gocyclo
,golint
,ineffassign
,license
andmisspell
. Replacegithub.com/golang-standards/project-layout
with your project reference.pkg.go.dev - pkg.go.dev is a new destination for Go discovery & docs. You can create a badge using the badge generation tool.
Release - It will show the latest release number for your project. Change the github link to point to your project.