书栈网 · BookStack 本次搜索耗时 0.042 秒,为您找到 548 个相关结果.
  • Batch ingestion

    Using externally hosted ML models for batch ingestion Step 1: Register a model group Step 2: Create a connector Step 3: Register an externally hosted model Step 4: Deploy the mo...
  • 命令行工具

    1050 2020-12-13 《PaddleHub v1.8 文档》
    PaddleHub命令行工具 hub install hub uninstall hub show hub download hub search hub list hub run hub help hub version hub clear hub autofinetune hub config hub se...
  • Home

    Home Home Build AI-powered semantic search applications txtai executes machine-learning workflows to transform data and build AI-powered semantic sear...
  • Neural

    Neural query Request fields Example request Neural query Use the neural query for vector field search in neural search . Request fields Include the following request fields...
  • 2.4 使用双连词生成随机文本

    2.4 使用双连词生成随机文本 2.4 使用双连词生成随机文本 我们可以使用条件频率分布创建一个双连词表(词对)。(我们在3 中介绍过。)bigrams() 函数接受一个单词列表,并建立一个连续的词对列表。记住,为了能看到结果而不是神秘的”生成器对象”,我们需要使用list() 函数︰ >>> sent = [ 'In' , 'the'...
  • Batch ingestion

    Using externally hosted ML models for batch ingestion Step 1: Register a model group Step 2: Create a connector Step 3: Register an externally hosted model Step 4: Deploy the mo...
  • text.data

    text.data NLP datasets Quickly assemble your data class TextLMDataBunch [source] [test] create [source] [test] class TextClasDataBunch [source] [test] create [source] ...
  • Training a Text Classifier

    651 2021-03-31 《The fastai book》
    Training a Text Classifier Language Model Using DataBlock Fine-Tuning the Language Model Saving and Loading Models Text Generation Creating the Classifier DataLoaders Fine-Tun...
  • Chapter 1.基础介绍

    Chapter 1.基础介绍 The Supervised Learning Paradigm Observation and Target Encoding One-Hot Representation TF Representation TF-IDF Representation Target Encoding Computational G...
  • 1.2 使用属性和约束

    1.2 使用属性和约束 1.2 使用属性和约束 我们说过非正式的语言类别具有 属性 ;例如,名词具有复数的属性。让我们把这个弄的更明确: N [ NUM = pl ] 注意一个句法类别可以有多个特征,例如V[TENSE=pres, NUM=pl] 。在一般情况下,我们喜欢多少特征就可以添加多少。 关于1.1 的最后的细节是语句%star...